Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(sin^2a+sin^2a+cos^2a=1,828\)
<=> \(sin^2a=0,828\)
<=> \(sina=\sqrt{0,828}\Rightarrow a=\) 69*29*51,93*
a, Áp dụng PTG: \(BC=\sqrt{AB^2+AC^2}=25\)
Áp dụng HTL: \(BH=\dfrac{AB^2}{BC}=9\)
b, \(\sin\alpha+\cos\alpha=1,4\Leftrightarrow\left(\sin\alpha+\cos\alpha\right)^2=1,96\)
\(\Leftrightarrow\sin^2\alpha+\cos^2\alpha+2\sin\alpha\cdot\cos\alpha=1,96\\ \Leftrightarrow\sin\alpha\cdot\cos\alpha=\dfrac{1,96-1}{2}=\dfrac{0,96}{2}=0,48\)
\(\sin^4\alpha+\cos^4\alpha=\left(\sin^2\alpha+\cos^2\alpha\right)^2-2\sin^2\alpha\cdot\cos^2\alpha\\ =1^2+2\left(\sin\alpha\cdot\cos\alpha\right)^2=1+2\cdot\left(0,48\right)^2=1,4608\)
Lời giải:
$\sin a+\cos a=1$
$\sin ^2a+\cos ^2a=1$
$\Rightarrow 2\sin a\cos a=(\sin a+\cos a)^2-(\sin ^2a+\cos ^2a)=1^2-1=0$
$\Rightarrow \sin a\cos a=0$
$\Rightarrow \sin a=0$ hoặc $\cos a=0$
Nếu $\sin a=0$ hoặc $\cos a=0$
Mà vì $a$ là góc nhọn nên $\sin a, \cos a< 1$ nên không tìm được góc $a$ thỏa mãn.
\(\dfrac{\left(sina+cosa\right)^2-\left(sina-cosa\right)^2}{sina.cosa}=4\\ VT=\dfrac{sin^2a+2sinacosa+cos^2a-sin^2a+2sinacosa-cos^2a}{sinacosa}\\ =\dfrac{4sinacosa}{sinacosa}=4=VP\)
a: \(S=cos^2a\left(1+tan^2a\right)=cos^2a\cdot\dfrac{1}{cos^2a}=1\)
b: \(VP=\dfrac{1+sin2a-1+sin2a}{\dfrac{1}{2}\cdot sin2a}=\dfrac{2\cdot sin2a}{\dfrac{1}{2}\cdot sin2a}=4=VT\)