Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình không hiểu quy luật của dãy số cho lắm! Xin lỗi.
(ngày mai bạn thi HSG môn Toán đúng không?)
Ta có :
\(\frac{9}{10}+\frac{39}{40}+\frac{87}{88}+...+\frac{1119}{1120}\)
\(=\)\(\left(1-\frac{1}{10}\right)+\left(1-\frac{1}{40}\right)+\left(1-\frac{1}{88}\right)+...+\left(1-\frac{1}{1120}\right)\)
\(=\)\(\left(1+1+1+...+1\right)-\left(\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+...+\frac{1}{1120}\right)\)
\(=\)\(\left(1+1+1+...+1\right)-\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{32.35}\right)\)
\(=\)\(11-\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{32}-\frac{1}{35}\right)\)
\(=\)\(11-\left(\frac{1}{2}-\frac{1}{35}\right)\)
\(=\)\(11-\frac{33}{70}\)
\(=\)\(\frac{737}{70}\)
Chúc bạn học tốt ~
1, A=\(\left(1+1+1+1\right)\)-\(\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}\right)\)
=4-\(\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\right)\)
= 4-\(\left(\frac{1}{1}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{9}\right)\)
=4-\(\left(1-\frac{1}{9}\right)\)
= 4-\(\frac{8}{9}\)
= \(\frac{7}{9}\)
9/10 + 39/40 + 87/88 + ... + 1119/1120
= ( 1 - 1/10 ) + ( 1 - 1/40 ) - ( 1 - 1/88 ) + .... + ( 1 - 1/1120 )
= \(\left(1-\frac{1}{2.5}\right)+\left(1-\frac{1}{5.8}\right)+...+\left(1-\frac{1}{32.35}\right)\)
= ( 1 + 1 +1 + ... +1 ) - ( \(\frac{1}{2.5}+\frac{1}{5.8}+...+\frac{1}{32.35}\)
= 11 - ( 1/2 - 1/5 + 1/5 - 1/8 + ... + 1/32 - 1/35 )
= 11 - ( 1/2 - 1/35 )
= 11 - 33/70
= \(10\frac{37}{70}\)
9/10 + 39/40 + 87/88 + ... + 1119/1120
= 1 - 1/10 + 1 - 1/40 + 1 - 1/88 + ... + 1 - 1/1120
= ( 1 + 1 + 1 + .. + 1 ) - ( 1/10 + 1/40 + 1/88 + ... + 1/1120 )
= ( 1 + 1 + 1 + .. +1 ) - ( 1/2.5 + 1/5.8 + 1/8.11+...+1/32.35)
= 11 - 1/3.( 3/2.5 + 3/5.8 + 3/8.11 + ... + 3/32.35)
= 11 - 1/3(1/2 - 1/5 + 1/5 - 1/8 + ... + 1/32 - 1/35)
= 11 - 1/3( 1/2 - 1/35)
= 11 - 1/3.33/70 = 11 - 11/90 = 979/90
Ta có:
=
=\(\left(1+1+...+1\right)-\)\(\left(\frac{1}{10}+\frac{1}{40}+\frac{1}{80}+...+\frac{1}{1120}\right)\)
=11\(-\left[\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-...\frac{1}{35}\right).\frac{1}{3}\right]\)
=11\(-\left[\left(\frac{1}{2}-\frac{1}{35}\right).\frac{1}{3}\right]\)
=11\(-\left(\frac{33}{10}.\frac{1}{3}\right)\)
=11\(-\frac{11}{70}\)
Đặt A=\(\frac{9}{10}+\frac{39}{40}+...+\frac{1119}{1120}\)
=>A=\(\frac{10-1}{10}+\frac{40-1}{40}+...+\frac{1120-1}{1120}\)
=>A=\(1-\frac{1}{10}+1-\frac{1}{40}+...+1-\frac{1}{1120}\)
=>A=\(11-\left(\frac{1}{10}+\frac{1}{40}+...+\frac{1}{1120}\right)\)
Đặt B=\(\frac{1}{10}+\frac{1}{40}+...+\frac{1}{1120}\)
=>3B=\(\frac{3}{10}+\frac{3}{40}+...+\frac{3}{1120}\)
=>3B=\(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{32}-\frac{1}{35}\)
=>3B=\(\frac{33}{70}\)
=>B=\(\frac{11}{70}\)
=>A=11-\(\frac{11}{70}\)
=>A=\(\frac{759}{70}\)