Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{-4}{13}.\dfrac{5}{17}+\dfrac{-12}{13}.\dfrac{4}{17}\)
= \(\dfrac{-4}{13}.\dfrac{5}{17}+\dfrac{-4}{13}.\dfrac{12}{17}\)
= \(\dfrac{-4}{13}.\left(\dfrac{5}{17}+\dfrac{12}{17}\right)\)
= \(\dfrac{-4}{13}.\dfrac{17}{17}\)
= \(\dfrac{-4}{13}.1\)
= \(\dfrac{-4}{13}\)
= \(\dfrac{-4.5-12.4}{13.17}\)
=\(\dfrac{-4\left(5+12\right)}{13.17}\)
=\(\dfrac{-4.17}{13.17}\)
=\(\dfrac{-4}{13}\)
\(\dfrac{6^3+2.6^2+2^3}{37}=\dfrac{2^3.3^3+2.2^2.3^2+2^3}{37}\\ \\ \\ \\ \\ \\ \\ \\ \\=\dfrac{2^3.3^3+2^3.3^2+2^3}{37}\\ \\ \\ \\ \\ \\ \\ \\ \\ =\dfrac{2^3.\left(3^3+3^2+1\right)}{37}=\dfrac{2^3.37}{37}=2^3=8\)
\(\dfrac{6^3+2.6^2+2^3}{37}=\dfrac{216+72+8}{37}=\dfrac{296}{37}=8\)
\(\left(-\dfrac{2}{3}+\dfrac{3}{7}\right):\dfrac{4}{5}+\left(-\dfrac{1}{3}+\dfrac{4}{7}\right)+\dfrac{4}{5}\\ =-\dfrac{5}{21}:\dfrac{4}{5}+\dfrac{5}{21}\\ =\left(-\dfrac{5}{21}+\dfrac{5}{21}\right):\dfrac{4}{5}\\ =0:\dfrac{4}{5}\\ =0.\)
Sửa cho mk dòng đầu là :4/5 và dòng tiếp theo mk thiếu :4/5
\(A=\left(\dfrac{1}{4.9}+\dfrac{1}{9.14}+..+\dfrac{1}{44.49}\right)\left(\dfrac{1-3-5-7-..-49}{89}\right)\\ A=\dfrac{1}{5}\left(\dfrac{5}{4.9}+\dfrac{5}{9.14}+..+\dfrac{5}{44.49}\right)\left(\dfrac{1-3-5-7-...-49}{89}\right)\\ A=\dfrac{1}{5}\left(\dfrac{1}{4}-\dfrac{1}{49}\right)\left(\dfrac{1-3-5-7-...-49}{89}\right)\)
\(A=\dfrac{9}{196}\left(\dfrac{1-3-5-7-...-49}{89}\right)\)
Ta đặt: \(P=1-3-5-7-...-49\\ =1-\left(3+5+7+..+49\right)\\ =1-624\\ =-623\\ \Rightarrow\dfrac{9}{196}.-\dfrac{623}{89}=-\dfrac{9}{28}.\)
Ta có: �=(14⋅9+19⋅14+114⋅19+...+144⋅49)⋅1−3−5−7−...−4989A=(4⋅91+9⋅141+14⋅191+...+44⋅491)⋅891−3−5−7−...−49
⇔�=15⋅(54⋅9+59⋅14+514⋅19+...+544⋅49)⋅1−3−5−7−...−4989⇔A=51⋅(4⋅95+9⋅145+14⋅195+...+44⋅495)⋅891−3−5−7−...−49
⇔�=15⋅(14−19+19−114+114−119+...+144−149)⋅1−3−5−7−...−4989⇔A=51⋅(41−91+91−141+141−191+...+441−491)⋅891−3−5−7−...−49
⇔�=15⋅(14−149)⋅1−3−5−7−...−4989⇔A=51⋅(41−491)⋅891−3−5−7−...−49
⇔�=15⋅(49−44⋅49)⋅1−3−5−7−...−4989⇔A=51⋅(4⋅4949−4)⋅891−3−5−7−...−49
⇔�=15⋅45196⋅1−3−5−7−...−4989⇔A=51⋅19645⋅891−3−5−7−...−49
⇔�=9196⋅1−3−5−7−...−4989⇔A=1969⋅891−3−5−7−...−49
⇔�=9196⋅−62389=−928⇔A=1969⋅89−623=−289
\(\sqrt[]{x+2}=-100\)
vì \(\sqrt[]{x+2}\ge0\)
Nên phương trình trên vô nghiệm
x+2=−100
vì �+2≥0x+2≥0
Nên phương trình trên vô nghiệm
Chúc bạn nha
\(A=\left(\dfrac{1}{4}-1\right).\left(\dfrac{1}{9}-1\right)....\left(\dfrac{1}{100}-1\right).\)
\(\Rightarrow A=\left(-\dfrac{3}{4}\right).\left(-\dfrac{8}{9}\right)....\left(-\dfrac{99}{100}\right)\)
mà A có 9 dấu - \(\left(4;9;16;25;36;49;64;81;100\right)\)
\(\Rightarrow0>A=\left(-\dfrac{3}{4}\right).\left(-\dfrac{8}{9}\right)....\left(-\dfrac{99}{100}\right)=-\dfrac{1}{2}\)
Ta lại có \(\left\{{}\begin{matrix}\dfrac{1}{2}=\dfrac{21}{42}\\\dfrac{11}{21}=\dfrac{22}{42}\end{matrix}\right.\) \(\Rightarrow\dfrac{1}{2}< \dfrac{11}{21}\Rightarrow-\dfrac{1}{2}>-\dfrac{11}{21}\)
\(\Rightarrow A>-\dfrac{11}{21}\)
\(A=\left(\dfrac{1}{4}-1\right)\left(\dfrac{1}{9}-1\right)...\left(\dfrac{1}{100}-1\right)\)
\(A=\left(-\dfrac{2^2-1}{2^2}\right)\left(-\dfrac{3^2-1}{3^2}\right)...\left(-\dfrac{10^2-1}{10^2}\right)\)
\(A=\left[-\dfrac{1\cdot3}{2\cdot2}\right]\left[-\dfrac{2\cdot4}{3\cdot3}\right]...\left[-\dfrac{9\cdot11}{10\cdot10}\right]\)
Dễ thấy A có 9 thừa số, suy ra
\(A=-\dfrac{1\cdot3\cdot2\cdot4\cdot...\cdot9\cdot11}{2\cdot2\cdot3\cdot3\cdot...\cdot10.10}=-\dfrac{1\cdot11}{2\cdot10}=\dfrac{-11}{20}\)
Vì 20 < 21 nên \(\dfrac{11}{20}>\dfrac{11}{21}\), suy ra \(\dfrac{-11}{20}< \dfrac{-11}{21}\)
Vậy \(A< \dfrac{-11}{21}\)
A = -\(x^2\) - 0,75
\(x^2\) ≥ 0 ∀ \(x\) ⇒ -\(x^2\) ≤ 0 ⇒ - \(x^2\) - 0,75 ≤ -0,75
Amax = -0,75 ⇔ \(x\) = 0
Do x² ≥ 0 với mọi x ∈ R
⇒ -x² ≤ 0 với mọi x ∈ R
⇒ -x² - 0,75 ≤ -0,75 với mọi x ∈ R
Vậy GTLN của A là -0,75 khi x = 0
\(\dfrac{12^3.18^2}{24^2}=\dfrac{12^3.6^2.3^2}{6^2.4^2}=\dfrac{4^3.3^3.3^2}{4^2}=4.3^3.3^2=4.3^5=972\)
\(\dfrac{12^3.18^2}{24^2}=\dfrac{1728.324}{576}=\dfrac{559872}{576}=972\)
Vậy giá trị cần tìm là 972