Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(\dfrac{1}{4.9}+\dfrac{1}{9.14}+..+\dfrac{1}{44.49}\right)\left(\dfrac{1-3-5-7-..-49}{89}\right)\\ A=\dfrac{1}{5}\left(\dfrac{5}{4.9}+\dfrac{5}{9.14}+..+\dfrac{5}{44.49}\right)\left(\dfrac{1-3-5-7-...-49}{89}\right)\\ A=\dfrac{1}{5}\left(\dfrac{1}{4}-\dfrac{1}{49}\right)\left(\dfrac{1-3-5-7-...-49}{89}\right)\)
\(A=\dfrac{9}{196}\left(\dfrac{1-3-5-7-...-49}{89}\right)\)
Ta đặt: \(P=1-3-5-7-...-49\\ =1-\left(3+5+7+..+49\right)\\ =1-624\\ =-623\\ \Rightarrow\dfrac{9}{196}.-\dfrac{623}{89}=-\dfrac{9}{28}.\)
Ta có: �=(14⋅9+19⋅14+114⋅19+...+144⋅49)⋅1−3−5−7−...−4989A=(4⋅91+9⋅141+14⋅191+...+44⋅491)⋅891−3−5−7−...−49
⇔�=15⋅(54⋅9+59⋅14+514⋅19+...+544⋅49)⋅1−3−5−7−...−4989⇔A=51⋅(4⋅95+9⋅145+14⋅195+...+44⋅495)⋅891−3−5−7−...−49
⇔�=15⋅(14−19+19−114+114−119+...+144−149)⋅1−3−5−7−...−4989⇔A=51⋅(41−91+91−141+141−191+...+441−491)⋅891−3−5−7−...−49
⇔�=15⋅(14−149)⋅1−3−5−7−...−4989⇔A=51⋅(41−491)⋅891−3−5−7−...−49
⇔�=15⋅(49−44⋅49)⋅1−3−5−7−...−4989⇔A=51⋅(4⋅4949−4)⋅891−3−5−7−...−49
⇔�=15⋅45196⋅1−3−5−7−...−4989⇔A=51⋅19645⋅891−3−5−7−...−49
⇔�=9196⋅1−3−5−7−...−4989⇔A=1969⋅891−3−5−7−...−49
⇔�=9196⋅−62389=−928⇔A=1969⋅89−623=−289
\(A=\left(\dfrac{1}{4}-1\right).\left(\dfrac{1}{9}-1\right)....\left(\dfrac{1}{100}-1\right).\)
\(\Rightarrow A=\left(-\dfrac{3}{4}\right).\left(-\dfrac{8}{9}\right)....\left(-\dfrac{99}{100}\right)\)
mà A có 9 dấu - \(\left(4;9;16;25;36;49;64;81;100\right)\)
\(\Rightarrow0>A=\left(-\dfrac{3}{4}\right).\left(-\dfrac{8}{9}\right)....\left(-\dfrac{99}{100}\right)=-\dfrac{1}{2}\)
Ta lại có \(\left\{{}\begin{matrix}\dfrac{1}{2}=\dfrac{21}{42}\\\dfrac{11}{21}=\dfrac{22}{42}\end{matrix}\right.\) \(\Rightarrow\dfrac{1}{2}< \dfrac{11}{21}\Rightarrow-\dfrac{1}{2}>-\dfrac{11}{21}\)
\(\Rightarrow A>-\dfrac{11}{21}\)
\(A=\left(\dfrac{1}{4}-1\right)\left(\dfrac{1}{9}-1\right)...\left(\dfrac{1}{100}-1\right)\)
\(A=\left(-\dfrac{2^2-1}{2^2}\right)\left(-\dfrac{3^2-1}{3^2}\right)...\left(-\dfrac{10^2-1}{10^2}\right)\)
\(A=\left[-\dfrac{1\cdot3}{2\cdot2}\right]\left[-\dfrac{2\cdot4}{3\cdot3}\right]...\left[-\dfrac{9\cdot11}{10\cdot10}\right]\)
Dễ thấy A có 9 thừa số, suy ra
\(A=-\dfrac{1\cdot3\cdot2\cdot4\cdot...\cdot9\cdot11}{2\cdot2\cdot3\cdot3\cdot...\cdot10.10}=-\dfrac{1\cdot11}{2\cdot10}=\dfrac{-11}{20}\)
Vì 20 < 21 nên \(\dfrac{11}{20}>\dfrac{11}{21}\), suy ra \(\dfrac{-11}{20}< \dfrac{-11}{21}\)
Vậy \(A< \dfrac{-11}{21}\)
\(\dfrac{-4}{13}.\dfrac{5}{17}+\dfrac{-12}{13}.\dfrac{4}{17}\)
= \(\dfrac{-4}{13}.\dfrac{5}{17}+\dfrac{-4}{13}.\dfrac{12}{17}\)
= \(\dfrac{-4}{13}.\left(\dfrac{5}{17}+\dfrac{12}{17}\right)\)
= \(\dfrac{-4}{13}.\dfrac{17}{17}\)
= \(\dfrac{-4}{13}.1\)
= \(\dfrac{-4}{13}\)
= \(\dfrac{-4.5-12.4}{13.17}\)
=\(\dfrac{-4\left(5+12\right)}{13.17}\)
=\(\dfrac{-4.17}{13.17}\)
=\(\dfrac{-4}{13}\)
Lời giải :
a ) \(1\dfrac{4}{23}+\dfrac{5}{21}-\dfrac{4}{23}+0,5+\dfrac{16}{21}\)
\(=\left(1\dfrac{4}{23}-\dfrac{4}{23}\right)+\left(\dfrac{5}{21}+\dfrac{16}{21}\right)+0,5\)
\(=2,5\)
b ) \(\dfrac{3}{7}.19\dfrac{1}{3}-\dfrac{3}{7}.33\dfrac{1}{3}\)
\(=\dfrac{3}{7}\left(19\dfrac{1}{3}-33\dfrac{1}{3}\right)\)
\(=\dfrac{3}{7}\left(19-33\right)\)
\(=\dfrac{3}{7}\left(-14\right)\)
\(=-6\)
c ) \(9\left(-\dfrac{1}{3}\right)^3+\dfrac{1}{3}\)
\(=9\left(-\dfrac{1}{27}\right)+\dfrac{1}{3}\)
\(=-\dfrac{1}{3}+\dfrac{1}{3}\)
\(=0\)
d ) \(15\dfrac{1}{4}\div\left(-\dfrac{5}{7}\right)-25\dfrac{1}{4}\div\left(-\dfrac{5}{7}\right)\)
\(=\left(15\dfrac{1}{4}-25\dfrac{1}{4}\right)\div\left(-\dfrac{5}{7}\right)\)
\(=-10\left(-\dfrac{7}{5}\right)\)
\(=14\)
5) \(\left(-2\right)^2+\sqrt{36}-\sqrt{9}+\sqrt{25}\)
=\(4+6-3+5\)
=\(12\)
2) \(\dfrac{11}{25}.\left(-24,8\right)-\dfrac{11}{25}.75,2\)
=\(\dfrac{11}{25}.\left(-24,8-75,2\right)\)
=\(\dfrac{11}{25}.\left(-100\right)\)
=\(-44\)
a. = \(\dfrac{-1}{24}-\left\{\dfrac{1}{4}-\dfrac{-3}{8}\right\}\)
= \(\dfrac{-1}{24}-\left\{\dfrac{1}{4}+\dfrac{3}{8}\right\}\)
= \(\dfrac{-1}{24}-\dfrac{5}{8}\)
= \(\dfrac{-2}{3}\)
b. = \(12\dfrac{7}{88}-3\dfrac{5}{11}\)
= \(8\dfrac{5}{8}\)
c. = \(\dfrac{-28}{9}+\dfrac{-413}{9}\)
= \(-49\)
d. = \(\dfrac{8}{35}:\dfrac{2}{11}+\dfrac{-8}{35}:\dfrac{2}{11}\)
= \(\dfrac{2}{11}:\left(\dfrac{8}{35}+\dfrac{-8}{35}\right)\)
= 0
a.\(12,5.\left(-\dfrac{5}{7}\right)+1,5.\left(-\dfrac{5}{7}\right)\)
\(=\left(-\dfrac{5}{7}\right).\left(12,5+1,5\right)\)
\(=-10\)
b,\(\left(-\dfrac{2}{5}-\dfrac{3}{7}\right):\dfrac{4}{5}+\left(-\dfrac{1}{5}+\dfrac{3}{7}\right):\dfrac{4}{5}\)
\(=\left(-\dfrac{2}{5}-\dfrac{3}{7}-\dfrac{1}{5}+\dfrac{3}{7}\right):\dfrac{4}{5}\)
\(=-\dfrac{3}{5}:\dfrac{4}{5}\)
\(=-\dfrac{3}{4}\)
c,\(12.\left(-\dfrac{2}{3}\right)^2+\dfrac{4}{3}\)
\(=12.\dfrac{4}{9}+\dfrac{4}{3}\)
\(=\dfrac{16}{3}+\dfrac{4}{3}\)
\(=\dfrac{20}{3}\)
d,\(1:\left(\dfrac{2}{3}-\dfrac{3}{4}\right)^2\)
\(=\dfrac{1}{1}:\dfrac{1}{144}\)
\(=144\)
e,\(15.\left(-\dfrac{2}{3}\right)^2-\dfrac{7}{3}\)
\(=15.\dfrac{4}{9}-\dfrac{7}{3}\)
\(=\dfrac{20}{3}-\dfrac{7}{3}\)
\(=\dfrac{13}{3}\)
a) = ( 12,5 +1,5 ). \(\left(-\dfrac{5}{7}\right)\)
= 14 . \(\left(-\dfrac{5}{7}\right)\)
= -10
b) = (\(-\dfrac{2}{5}+-\dfrac{1}{5}\)) + \(\left(\dfrac{3}{7}-\dfrac{3}{7}\right)\): \(\dfrac{4}{5}\)
= \(\left(-\dfrac{3}{5}+0\right)\): \(\dfrac{4}{5}\)
= \(\dfrac{3}{4}\)
c) = \(\left(12.-\dfrac{2}{9}\right)\) + \(\dfrac{4}{3}\)
= \(\dfrac{8}{3}\) + \(\dfrac{4}{3}\)
= \(-\dfrac{4}{3}\)
d) = 1: \(\dfrac{23}{48}\)
=\(\dfrac{48}{23}\)
e) =\(\left(15.-\dfrac{2}{9}\right)-\dfrac{7}{3}\)
= \(\left(-\dfrac{10}{3}\right)-\dfrac{7}{3}\)
=\(-\dfrac{17}{3}\)
f) = 10 485.76
\(a)\dfrac{-5}{21}-\dfrac{1}{3}+3\dfrac{1}{2}.\left(\dfrac{-2}{3}\right)^3\)
\(=\dfrac{-5}{21}+\dfrac{-7}{21}+\dfrac{7}{2}.\dfrac{-8}{27}\)
\(=-\dfrac{4}{7}+\dfrac{-28}{27}\)
\(=\dfrac{-108}{189}+\dfrac{-196}{189}\)
\(=-\dfrac{304}{189}\)
\(b)-2\dfrac{1}{3}+\left(\dfrac{3}{8}-\dfrac{3}{4}\right)^3:\dfrac{5}{9}-\dfrac{1}{2}\)
\(=-\dfrac{7}{3}+\left(\dfrac{3}{8}-\dfrac{6}{8}\right)^3.\dfrac{9}{5}-\dfrac{1}{2}\)
\(=-\dfrac{7}{3}+\left(-\dfrac{3}{8}\right)^3.\dfrac{9}{5}-\dfrac{1}{2}\)
\(=-\dfrac{7}{3}+\dfrac{-27}{512}.\dfrac{9}{5}-\dfrac{1}{2}\)
\(=-\dfrac{7}{3}+\dfrac{-243}{2560}-\dfrac{1}{2}\)
\(=\dfrac{-17920}{7680}+\dfrac{-729}{7680}+\dfrac{-3840}{7680}\)
\(=\dfrac{-22489}{7680}\)
\(\left(-\dfrac{2}{3}+\dfrac{3}{7}\right):\dfrac{4}{5}+\left(-\dfrac{1}{3}+\dfrac{4}{7}\right)+\dfrac{4}{5}\\ =-\dfrac{5}{21}:\dfrac{4}{5}+\dfrac{5}{21}\\ =\left(-\dfrac{5}{21}+\dfrac{5}{21}\right):\dfrac{4}{5}\\ =0:\dfrac{4}{5}\\ =0.\)
Sửa cho mk dòng đầu là :4/5 và dòng tiếp theo mk thiếu :4/5