Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{C}{9}=\frac{4}{1.3.5}+\frac{4}{3.5.7}+\frac{4}{5.7.9}+...+\frac{4}{21.23.25}+\frac{4}{23.25.27}.\)
\(\frac{C}{9}=\frac{5-1}{1.3.5}+\frac{7-3}{3.5.7}+\frac{9-5}{5.7.9}+...+\frac{25-21}{21.23.25}+\frac{27-23}{23.25.27}\)
\(\frac{C}{9}=\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+\frac{1}{5.7}-\frac{1}{7.9}+...+\frac{1}{21.23}-\frac{1}{23.25}+\frac{1}{23.25}-\frac{1}{25.27}\)
\(\frac{C}{9}=\frac{1}{3}-\frac{1}{25.27}\Rightarrow C=\frac{9\left(25.9-1\right)}{25.27}=\frac{25.9-1}{25.3}=3-\frac{1}{25.3}< 3\)
a)\(A=\frac{36}{1.3.5}+\frac{36}{3.5.7}+\frac{36}{5.7.9}+...+\frac{36}{25.27.29}\)
=\(\frac{9.4}{1.3.5}+\frac{9.4}{3.5.7}+\frac{9.4}{5.7.9}+...+\frac{9.4}{25.27.29}\)
=\(9.\left(\frac{4}{1.3.5}+\frac{4}{3.5.7}+\frac{4}{5.7.9}+...+\frac{4}{25.27.29}\right)\)
=\(9.\left(\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+\frac{1}{5.7}-\frac{1}{7.9}+...+\frac{1}{25.27}-\frac{1}{27.29}\right)\)
=\(9.\left(\frac{1}{3}-\frac{1}{27.29}\right)=9.\left(\frac{1}{3}-\frac{1}{783}\right)=9.\left(\frac{261}{783}-\frac{1}{783}\right)=9.\frac{260}{783}\)
=\(\frac{260}{87}\)
b)
ta có: \(3=\frac{261}{87}>\frac{260}{87}\)
vậy A<3
Áp dụng: \(\frac{4}{n\left(n+2\right)\left(n+4\right)}=\frac{n+4-n}{n\left(n+2\right)\left(n+4\right)}=\frac{1}{n\left(n+2\right)}-\frac{1}{\left(n+2\right)\left(n+4\right)}\)
\(\frac{B}{9}=\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{25.27}-\frac{1}{27.29}=\frac{1}{3}-\frac{1}{27.29}
\(\dfrac{3}{2.6}\) + \(\dfrac{3}{6.10}\) + \(\dfrac{3}{10.14}\)
= \(\dfrac{3}{4}\).(\(\dfrac{4}{2.6}\) + \(\dfrac{4}{6.10}\) + \(\dfrac{4}{10.14}\))
= \(\dfrac{3}{4}\).(\(\dfrac{1}{2}-\dfrac{1}{6}\) + \(\dfrac{1}{6}\) - \(\dfrac{1}{10}\) + \(\dfrac{1}{10}\) - \(\dfrac{1}{14}\))
= \(\dfrac{3}{4}\).(\(\dfrac{1}{2}\) - \(\dfrac{1}{14}\))
= \(\dfrac{3}{4}\). \(\dfrac{3}{7}\)
= \(\dfrac{9}{28}\)
B = \(\dfrac{4}{1.3.5}\) + \(\dfrac{4}{3.5.7}\) + \(\dfrac{4}{5.7.9}\)
B = \(\dfrac{1}{1.3}\) - \(\dfrac{1}{3.5}\) + \(\dfrac{1}{3.5}\) - \(\dfrac{1}{5.7}\) + \(\dfrac{1}{5.7}\) - \(\dfrac{1}{7.9}\)
B = \(\dfrac{1}{1.3}\) - \(\dfrac{1}{7.9}\)
B = \(\dfrac{1}{3}\) - \(\dfrac{1}{63}\)
B = \(\dfrac{20}{63}\)
=1/1.3-1/3.5+1/3.5-1/5.7+...+1/99.11-1/11.13
=1/1.3-1/11.13
=1/3-1/143
=140/429
$\frac{4}{n\left(n+2\right)\left(n+4\right)}=\frac{n+4-n}{n\left(n+2\right)\left(n+4\right)}=\frac{1}{n\left(n+2\right)}-\frac{1}{\left(n+2\right)\left(n+4\right)}$4n(n+2)(n+4) =n+4−nn(n+2)(n+4) =1n(n+2) −1(n+2)(n+4) $\frac{B}{9}=\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{25.27}-\frac{1}{27.29}=\frac{1}{3}-\frac{1}{27.29}<\frac{1}{3}$B9 =11.3 −13.5 +13.5 −15.7 +...+125.27 −127.29 =13 −127.29 <13 $\Rightarrow B<3$
Lời giải:
$\frac{4}{3}C=\frac{7-3}{3.5.7}+\frac{9-5}{5.7.9}+...+\frac{2005-2001}{2001.2003.2005}$
$=\frac{1}{3.5}-\frac{1}{5.7}+\frac{1}{5.7}-\frac{1}{7.9}+...+\frac{1}{2001.2003}-\frac{1}{2003.2005}$
$=\frac{1}{3.5}-\frac{1}{2003.2005}$
$\Rightarrow C=\frac{3}{4}(\frac{1}{3.5}-\frac{1}{2003.2005})$
$\Rightarrow C=\frac{1}{20}-\frac{3}{4.2003.2005}$