Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) S1 = 1 + (-2) + 3 + (-4) + ... + (-2014) + 2015
S1 = [1 + (-2)] + [3 + (-4)] + ... + [2013 + (-2014)] + 2015
S1 = (-1) + (-1) + ... + (-1) + 2015
2014 : 2 = 1007
S1 = (-1) . 1007 + 2015
S1 = (-1007) + 2015
S1 = 1008
b) S2 = (-2) + 4 + (-6) + 8 + ... + (-2014) + 2016
S2 = [(-2) + 4] + [(-6) + 8] + ... + [(-2014) + 2016]
S2 = 2 + 2 + ... 2
2016 : 2 = 1008
S2 = 2 . 1008
S2 = 2016
c) S3 = 1 + (-3) + 5 + (-7) + ... + 2013 + (-2015)
S3 = [1 + (-3)] + [5 + (-7)] + ... + [2013 + (-2015)]
S3 = (-2) + (-2) + ... + (-2)
(2015 - 1) : 2 + 1 = 1008 : 2 = 504
S3 = (-2) . 504
S3 = -1008
d) S4 = (-2015) + (-2014) + (-2013) + ... + 2015 + 2016
S4 = 2016 + [(-2015) + 2015] + [(-2014) + 2014] + ... + [(-1) + 1] + 0
S4 = 2016 + 0
S4 = 2016
a, \(S_1=1+\left(-2\right)+3+\left(-4\right)+...+\left(-2014\right)+2015\\ =1+\left[\left(-2\right)+3\right]+\left[\left(-4\right)+5\right]+...+\left[\left(-2014\right)+2015\right]\\ =1+1+...+1=1008\)
b, làm tương tự phần a
c, cũng làm tương tự
d, \(S_4=\left(-2015\right)+\left(-2014\right)+...+2015+2016\\ =\left[\left(-2015\right)+2015\right]+\left[\left(-2014\right)+2014\right]+...+\left[\left(-1\right)+1\right]+0+2016\\ =0+0+...+0+2016=2016\)
1-3+5-7+....+2009-2011+2013
=-2+(-2)+....+(-2)+2013
cÓ 503 SỐ HẠNG
=(-2).503 +2013
=1007
x1 + x2 = ...= x2013 + x2014 = 1
nên : ( x1 + x2 ) + ..... + (x2013 + x2014 ) = 1007
hay x1 + .... + x2014 = 1007
mà x1 + x 2 + .... + x2015 = 0
Vậy x2015 = - 1007
S1 = 1-2+3-4+....+2017-2018
= (-1)+(-1)+....+(-1)
= (-1) x 1009
= -1009
Bài 2 : a) Ta có :
\(S=1+3+3^2+3^3+...+3^{2014}+3^{2015}\)
=> \(S=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{2014}+3^{2015}\right)\)
=> \(S=4+3^2\left(1+3\right)+...+3^{2014}\left(1+3\right)\)
=> \(S=4+3^2.4+3^4.4+...+3^{2014}.4\)
=> \(S=4\left(3^2+3^4+...+3^{2014}\right)\)
Vì 4 chia hết cho 4 => S chia hết cho 4
b) \(S=1+3+3^2+3^3+...+3^{2014}+3^{2015}\)
=> \(S=\left(1+3+3^2+3^3\right)+...+\left(3^{2012}+3^{2013}+3^{2014}+3^{2015}\right)\)
=> \(S=40+3^4.40+3^8.40+...+3^{2012}.40\)
=> \(S=40\left(1+3^4+3^8+...+3^{2012}\right)\)
Vì 40 chia hết cho 10 => S chia hết cho 10 => S có tận cùng là 0
S = 1 + 3 + 32 + 33 + ..... + 32014 + 32015
=> 3S = 3 + 32 + 33 + 34 + .... + 32015 + 32016
=> 3S - S = 32016 - 1
=> S = ( 32016 - 1 ) : 2
Ta có 32016 = ( 34 )504 = 81504 = .......1
=> S = ( ......1 - 1 ) : 2 = ......0 : 2 = ......5
Vậy chữ số tận cùng của S là 5
Ta có:
x1 + x2 + x3 + ... + x2015 + x2016 + x2017 = (x1 + x2 + x3 + ... + x2015 + x2016) +x2017=0
=[ (x1 + x2 + x3) + ...... + (x2014+x2015 + x2016) ] + x2017 = ( 1 + 1 +1 + ......... + 1 ) + x2017=0
[ (x1 + x2 + x3) + ...... + (x2014+x2015 + x2016) ] có : (2016-1)+1:3=672(nhóm)
=>( 1 + 1 +1 + ......... + 1 ) + x2017= 672 + x2017 = 0
=> x2017=0-672=-672
Vậy x2017=-672
a, s1 có 2015 hạng tử
=> s1= (2014:2).-1+2015=1007.(-1)+2015=1008
Lời giải:
a,S1=1+(-2)+3+(-4)+...+(-2014)+2015
=(1-2)+(3-4)+...+(2013-2014)+2015
=-1+(-1)+...+(-1)+2015
=-1.1007+2015
=(-1007)+2015
=1008
b,S2=(-2)+4+(-6)+8+...+(-2014)+2016
=(-2+4)+(-6+8)+...+(-2014+2016)
=2+2+...+2
=2.504
=1008
c,S3=1+(-3)+5+(-7)+...+2013+(-2015)
=(1-3)+(5-7)+...+(2013-2015)
=(-2)+(-2)+...+(-2)
=(-2).504
=-1008
d,S4=(-2015)+(-2014)+(-2013)+...+2015+2016
=(-2015+2015)+...+0+2016
=0+...+0+2016
=2016
STUDY WELL !