K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
22 tháng 2 2023

Lời giải:

a. \(\lim\limits_{x\to 1+}(x^3+x+1)=3>0\)

\(\lim\limits_{x\to 1+}(x-1)=0\) và $x-1>0$ khi $x>1$

\(\Rightarrow \lim\limits_{x\to 1+}\frac{x^3+x+1}{x-1}=+\infty\)

b.

 \(\lim\limits_{x\to -1+}(3x+2)=-1<0\)

\(\lim\limits_{x\to -1+}(x+1)=0\) và $x+1>0$ khi $x>-1$

\(\Rightarrow \lim\limits_{x\to -1+}\frac{3x+2}{x+1}=-\infty\)

c.

\(\lim\limits_{x\to 2-}(x-15)=-17<0\)

\(\lim\limits_{x\to 2-}(x-2)=0\) và $x-2<0$ khi $x<2$

\(\Rightarrow \lim\limits_{x\to 2-}\frac{x-15}{x-2}=+\infty\)

 

 

 

24 tháng 1 2021

a/ L'Hospital:

 \(=\lim\limits_{x\rightarrow2}\dfrac{x-\left(x+2\right)^{\dfrac{1}{2}}}{\left(4x+1\right)^{\dfrac{1}{2}}-3}=\lim\limits_{x\rightarrow2}\dfrac{1-\dfrac{1}{2}\left(x+2\right)^{-\dfrac{1}{2}}}{\dfrac{1}{2}\left(4x+1\right)^{-\dfrac{1}{2}}.4}=\dfrac{1-\dfrac{1}{2}.4^{-\dfrac{1}{2}}}{2.9^{-\dfrac{1}{2}}}=\dfrac{9}{8}\)

b/ L'Hospital:\(=\lim\limits_{x\rightarrow1}\dfrac{\left(2x+7\right)^{\dfrac{1}{2}}+x-4}{x^3-4x^2+3}=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{1}{2}\left(2x+7\right)^{-\dfrac{1}{2}}.2+1}{3x^2-8x}=\dfrac{9^{-\dfrac{1}{2}}+1}{3-8}=-\dfrac{4}{15}\)

9 tháng 2 2021

a/ \(\lim\limits_{x\rightarrow2}\dfrac{2+3}{4+2+4}=\dfrac{5}{10}=\dfrac{1}{2}\)

b/ \(\lim\limits_{x\rightarrow-3}\dfrac{\left(x+2\right)\left(x+3\right)}{x\left(x+3\right)}=\lim\limits_{x\rightarrow-3}\dfrac{x+2}{x}=\dfrac{-3+2}{-3}=\dfrac{1}{3}\)

10 tháng 11 2023

a: \(\lim\limits_{x\rightarrow1}\dfrac{x^2-1}{\sqrt{3x+1}-2}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(x+1\right)}{\dfrac{3x+1-4}{\sqrt{3x+1}+2}}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(x+1\right)\cdot\left(\sqrt{3x+1}+2\right)}{3\left(x-1\right)}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\left(x+1\right)\left(\sqrt{3x+1}+2\right)}{3}\)

\(=\dfrac{\left(1+1\right)\left(\sqrt{3+1}+2\right)}{2}=\dfrac{2\cdot4}{3}=\dfrac{8}{3}\)

b: \(\lim\limits_{x\rightarrow2}\dfrac{x^2-2x}{\sqrt{x+2}-2}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{x\left(x-2\right)}{\dfrac{x+2-4}{\sqrt{x+2}+2}}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{x\left(x-2\right)\cdot\left(\sqrt{x+2}+2\right)}{x-2}\)

\(=\lim\limits_{x\rightarrow2}x\left(\sqrt{x+2}+2\right)\)

\(=2\cdot\left(\sqrt{2+2}+2\right)\)

\(=2\cdot4=8\)

4 tháng 4 2017

a) Ta có (x - 2)2 = 0 và (x - 2)2 > 0 với ∀x ≠ 2 và (3x - 5) = 3.2 - 5 = 1 > 0.

Do đó = +∞.

b) Ta có (x - 1) và x - 1 < 0 với ∀x < 1 và (2x - 7) = 2.1 - 7 = -5 <0.

Do đó = +∞.

c) Ta có (x - 1) = 0 và x - 1 > 0 với ∀x > 1 và (2x - 7) = 2.1 - 7 = -5 < 0.

Do đó = -∞.



4 tháng 4 2017

Giỏi quá ta, chắc là hs cao tuổi nhất ...

1: \(A=\dfrac{x^2-\left(a+1\right)x+a}{x^3-a^3}\)

\(=\dfrac{x^2-xa-x+a}{\left(x-a\right)\left(x^2+ax+a^2\right)}\)

\(=\dfrac{\left(x-a\right)\left(x-1\right)}{\left(x-a\right)\left(x^2+ax+a^2\right)}=\dfrac{x-1}{x^2+ax+a^2}\)

\(lim_{x->a}A=lim_{x->a}\left(\dfrac{x-1}{x^2+ax+a^2}\right)\)

\(=\dfrac{a-1}{a^2+a^2+a^2}=\dfrac{a-1}{3a^2}\)

2: \(B=\dfrac{1}{1-x}-\dfrac{3}{1-x^3}\)

\(=\dfrac{-1}{x-1}+\dfrac{3}{x^3-1}\)
\(=\dfrac{-x^2-x-1+3}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{-x^2-x+2}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{-\left(x+2\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{-x-2}{x^2+x+1}\)

\(lim_{x->1}\left(B\right)=\dfrac{-1-2}{1^2+1+1}=\dfrac{-3}{3}=-1\)

3: \(C=\dfrac{\left(x+h\right)^3-x^3}{h}=\dfrac{\left(x+h-x\right)\left(x^2+2xh+h^2+x^2+hx+x^2\right)}{h}\)

\(=3x^2+3hx\)

\(lim_{h->0}\left(C\right)=3x^2+3\cdot0\cdot x=3x^2\)

a: \(\lim\limits_{x->0^-^-}\dfrac{-2x+x}{x\left(x-1\right)}=lim_{x->0^-}\left(\dfrac{-x}{x\left(x-1\right)}\right)\)

\(=lim_{x->0^-}\left(\dfrac{-1}{x-1}\right)=\dfrac{-1}{0-1}=\dfrac{-1}{-1}=1\)

b: \(=lim_{x->-\infty}\left(\dfrac{x^2-x-x^2+1}{\sqrt{x^2-x}+\sqrt{x^2-1}}\right)\)

\(=lim_{x->-\infty}\left(\dfrac{-x+1}{\sqrt{x^2-x}+\sqrt{x^2-1}}\right)\)

\(=lim_{x->-\infty}\left(\dfrac{-1+\dfrac{1}{x}}{-\sqrt{1-\dfrac{1}{x^2}}-\sqrt{1-\dfrac{1}{x^2}}}\right)=\dfrac{-1}{-2}=\dfrac{1}{2}\)

 

19 tháng 2 2023

lỗi gõ câu a

7 tháng 11 2023

Em là tám lại ạ

Em là duy khôi ạ

Em là văn tam ạ

Em là mạnh Tuấn ạ

 

a: \(\lim\limits_{x\rightarrow2}\left(\dfrac{1}{x-2}-\dfrac{12}{x^3-8}\right)\)

\(=\lim\limits_{x\rightarrow2}\dfrac{x^2+2x+4-12}{\left(x-2\right)\left(x^2+2x+4\right)}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{x^2+2x-8}{\left(x-2\right)\left(x^2+2x+4\right)}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{x+4}{x^2+2x+4}\)

\(=\dfrac{2+4}{2^2+2\cdot2+4}=\dfrac{6}{4+4+4}=\dfrac{6}{12}=\dfrac{1}{2}\)

b: \(\lim\limits_{x\rightarrow2}\left(\dfrac{1}{x^2-3x+2}+\dfrac{1}{x^2-5x+6}\right)\)

\(=\lim\limits_{x\rightarrow2}\left(\dfrac{1}{\left(x-1\right)\left(x-2\right)}+\dfrac{1}{\left(x-2\right)\left(x-3\right)}\right)\)

\(=\lim\limits_{x\rightarrow2}\left(\dfrac{x-3+x-1}{\left(x-2\right)\left(x-3\right)\left(x-1\right)}\right)\)

\(=\lim\limits_{x\rightarrow2}\dfrac{2x-4}{\left(x-2\right)\left(x-3\right)\left(x-1\right)}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{2}{\left(x-3\right)\left(x-1\right)}=\dfrac{2}{\left(2-3\right)\left(2-1\right)}=-2\)

d: \(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2+1}-\sqrt[3]{x^3-1}\right)\)

\(=\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2+1}-x+x-\sqrt[3]{x^3-1}\right)\)

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{x^2+1-x^2}{\sqrt{x^2+1}+x}+\dfrac{x^3-x^3+1}{\sqrt[3]{x^2}+x\cdot\sqrt[3]{x^3-1}+\sqrt[3]{\left(x^3-1\right)^2}}\)

\(=\lim\limits_{x\rightarrow+\infty}\left(\dfrac{1}{\sqrt{x^2+1}+x}+\dfrac{1}{\sqrt[3]{x^2}+x\cdot\sqrt[3]{x^3-1}+\sqrt[3]{\left(x^3-1\right)^2}}\right)\)

\(=\lim\limits_{x\rightarrow+\infty}\left(\dfrac{\dfrac{1}{x}}{\sqrt{1+\dfrac{1}{x^2}}+1}+\dfrac{\dfrac{1}{x^2}}{\sqrt[3]{\dfrac{1}{x^4}}+\sqrt[3]{1-\dfrac{1}{x^3}}+\sqrt[3]{\left(1-\dfrac{1}{x^3}\right)^2}}\right)\)

=0

c: \(\lim\limits_{x\rightarrow+\infty}\left[x\cdot\left(\sqrt{x^2+1}-x\right)\right]\)

\(=\lim\limits_{x\rightarrow+\infty}\left[x\cdot\dfrac{x^2+1-x^2}{\sqrt{x^2+1}+x}\right]\)

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{x}{\sqrt{x^2+1}+x}\)

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{1}{\sqrt{1+\dfrac{1}{x^2}}+1}=\dfrac{1}{1+1}=\dfrac{1}{2}\)

e: \(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{x^2+1}-1}{\sqrt{x^2+16}-4}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{x^2+1-1}{\sqrt{x^2+1}+1}:\dfrac{x^2+16-16}{\sqrt{x^2+16}+4}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{\sqrt{x^2+16}+4}{\sqrt{x^2+1}+1}=\dfrac{4+4}{1+1}=\dfrac{8}{2}=4\)