K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2017

*2010/1+2009/2+...+1/2010

=(2009/2+1)+(2008/3+1)+...+(1/2010+1)+1

=2011/2+2011/3+..+2011/2010+2011/2011

=2011(1/2+1/3+1/4+...+1/2011)

=> C=2011/1=2011

7 tháng 2 2018

Bạn giải cũng được đấy alibaba nguyễn, nhưng theo mình thì làm cách này dễ hiểu hơn!

Ta có: \(C=\frac{\frac{2010}{1}+\frac{2009}{2}+\frac{2008}{3}+...+\frac{1}{2010}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}}\)

Đặt \(A=\frac{2010}{1}+\frac{2009}{2}+\frac{2008}{3}+...+\frac{1}{2010}\)

\(A=\frac{2010}{1}+1+\frac{2009}{1}+1+\frac{2008}{1}+1+...+\frac{1}{2010}+1-2010\)

\(=\frac{2011}{1}+\frac{2011}{2}+\frac{2011}{3}+...+\frac{2011}{2010}-\frac{2011.2010}{2011}\)

\(=2011\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2010}-\frac{2010}{2011}\right)\)

Đặt \(B=\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}\)

\(B=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}-1\)

\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2010}-\frac{2010}{2011}\)

Ta có: \(C=\frac{A}{B}=2011\)(lấy A-B)

Ta có :

\(2010A=\dfrac{2010^{2012}+2010}{2010^{2012}+1}=\dfrac{2010^{2012}+1+2009}{2010^{2012}+1}=1+\dfrac{2009}{2010^{2012}+1}\)

\(2010B=\dfrac{2010^{2011}+2010}{2010^{2011}+1}=\dfrac{2010^{2011}+1+2009}{2010^{2011}+1}=1+\dfrac{2009}{2010^{2011}+1}\)

Vì \(1+\dfrac{2009}{2010^{2012}+1}< 1+\dfrac{2009}{2010^{2011}+1}\Rightarrow A< B\)

~ Học tốt ~

29 tháng 7 2015

Ghi lộn đề thiếu thì phải. Hình như thiếu phân số 1/2011

27 tháng 4 2016

tìm x hử

10 tháng 7 2016

(2008 x 2009 x 2010 x 2011) x (1 + 1/2 : 3/2 - 4/3)

=(2008 x 2009 x 2010 x 2011) x (1 + 1/3 - 4/3)

=(2008 x 2009 x 2010 x 2011) x (4/3 - 4/3)

=(2008 x 2009 x 2010 x 2011) x 0

=0

10 tháng 7 2016

đáp số:0

ủng hộ nha

20 tháng 1 2019

Ta có dãy số : 1,2,3,...,2011,2012 có : (2012-1)+1=2012(số)

Ta thấy : 2012 :2 nên :

[(-1)+2]+[(-3)+4]+...+[(-2009)+2010]+[(-2011)+2012] (có 1006 cặp)

= 1 . 1006

=1006

20 tháng 1 2019

Đặt cả tổng đó là A(hayf j đó tùy bạn)

ta có

A=1+2+3+4+...+2012-2(1+3+5+...+2011) 

A=2025078-2.1012036

A=2025078-2024072

A=1006 

*xong*

18 tháng 6 2017

Đặt D1 = \(\dfrac{2010}{1}\) + \(\dfrac{2009}{2}\) + \(\dfrac{2008}{3}\) + ... + \(\dfrac{1}{2010}\)

= 1 + ( 1+ \(\dfrac{2009}{2}\)) + ( 1+ \(\dfrac{2008}{3}\)) + ... + (1+\(\dfrac{1}{2010}\))

= \(\dfrac{2011}{2}\) + \(\dfrac{2011}{3}\)+ ... + \(\dfrac{2011}{2010}\) + \(\dfrac{2011}{2011}\)

= 2011. ( \(\dfrac{1}{2}\) + \(\dfrac{1}{3}\) + ... + \(\dfrac{1}{2010}\) + \(\dfrac{1}{2011}\))

Đặt D2 = \(\dfrac{1}{2}\) + \(\dfrac{1}{3}\) + ... + \(\dfrac{1}{2010}\) + \(\dfrac{1}{2011}\)

=> D = 2011

cho mk 1 tick nha ok