Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*2010/1+2009/2+...+1/2010
=(2009/2+1)+(2008/3+1)+...+(1/2010+1)+1
=2011/2+2011/3+..+2011/2010+2011/2011
=2011(1/2+1/3+1/4+...+1/2011)
=> C=2011/1=2011
Bạn giải cũng được đấy alibaba nguyễn, nhưng theo mình thì làm cách này dễ hiểu hơn!
Ta có: \(C=\frac{\frac{2010}{1}+\frac{2009}{2}+\frac{2008}{3}+...+\frac{1}{2010}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}}\)
Đặt \(A=\frac{2010}{1}+\frac{2009}{2}+\frac{2008}{3}+...+\frac{1}{2010}\)
\(A=\frac{2010}{1}+1+\frac{2009}{1}+1+\frac{2008}{1}+1+...+\frac{1}{2010}+1-2010\)
\(=\frac{2011}{1}+\frac{2011}{2}+\frac{2011}{3}+...+\frac{2011}{2010}-\frac{2011.2010}{2011}\)
\(=2011\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2010}-\frac{2010}{2011}\right)\)
Đặt \(B=\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}\)
\(B=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}-1\)
\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2010}-\frac{2010}{2011}\)
Ta có: \(C=\frac{A}{B}=2011\)(lấy A-B)
Ta có :
\(2010A=\dfrac{2010^{2012}+2010}{2010^{2012}+1}=\dfrac{2010^{2012}+1+2009}{2010^{2012}+1}=1+\dfrac{2009}{2010^{2012}+1}\)
\(2010B=\dfrac{2010^{2011}+2010}{2010^{2011}+1}=\dfrac{2010^{2011}+1+2009}{2010^{2011}+1}=1+\dfrac{2009}{2010^{2011}+1}\)
Vì \(1+\dfrac{2009}{2010^{2012}+1}< 1+\dfrac{2009}{2010^{2011}+1}\Rightarrow A< B\)
~ Học tốt ~
(2008 x 2009 x 2010 x 2011) x (1 + 1/2 : 3/2 - 4/3)
=(2008 x 2009 x 2010 x 2011) x (1 + 1/3 - 4/3)
=(2008 x 2009 x 2010 x 2011) x (4/3 - 4/3)
=(2008 x 2009 x 2010 x 2011) x 0
=0
Ta có dãy số : 1,2,3,...,2011,2012 có : (2012-1)+1=2012(số)
Ta thấy : 2012 :2 nên :
[(-1)+2]+[(-3)+4]+...+[(-2009)+2010]+[(-2011)+2012] (có 1006 cặp)
= 1 . 1006
=1006
Đặt cả tổng đó là A(hayf j đó tùy bạn)
ta có
A=1+2+3+4+...+2012-2(1+3+5+...+2011)
A=2025078-2.1012036
A=2025078-2024072
A=1006
*xong*
Đặt D1 = \(\dfrac{2010}{1}\) + \(\dfrac{2009}{2}\) + \(\dfrac{2008}{3}\) + ... + \(\dfrac{1}{2010}\)
= 1 + ( 1+ \(\dfrac{2009}{2}\)) + ( 1+ \(\dfrac{2008}{3}\)) + ... + (1+\(\dfrac{1}{2010}\))
= \(\dfrac{2011}{2}\) + \(\dfrac{2011}{3}\)+ ... + \(\dfrac{2011}{2010}\) + \(\dfrac{2011}{2011}\)
= 2011. ( \(\dfrac{1}{2}\) + \(\dfrac{1}{3}\) + ... + \(\dfrac{1}{2010}\) + \(\dfrac{1}{2011}\))
Đặt D2 = \(\dfrac{1}{2}\) + \(\dfrac{1}{3}\) + ... + \(\dfrac{1}{2010}\) + \(\dfrac{1}{2011}\)
=> D = 2011
cho mk 1 tick nha