Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Kurosaki Akatsu - Toán lớp 8 - Học toán với OnlineMath
A = (1 - 2/3 + 4/3) - (4/5 - 1) + (7/5 + 2)
A= (3/3 - 2/3 + 4/3) - (4/5 - 5/5) + (7/5 + 10/5)
A= 5/3 + 1/5 + 17/5
A= 5/3 +18/5
A= 25/15 + 54/15
A= 79/15
B= (-3 + 3/4 - 1/3 ) : (5 + 2/5 - 2/3)
B= (-36/12 + 9/12 - 4/12) : (75/15 + 6/15 - 10/15)
B= -31/12 : 71/15
B= -155/284
C= (3/5 - 4/5 ) . (2/7 - 3/14) - (5/9 - 7/27) . (1 - 3/5) + (1 - 11/12) . (1-11/12)
C= -1/5 . 1/14 - 8/27 . 2/5 + 1/12 . 1/12
C=-1/70 - 16/135 + 1/144
C=-216/15120 - 1792/15120 + 105/15120
C=-1903/15120
a) \(10,\left(3\right)+0,\left(4\right)-8,\left(6\right)\)
\(=\frac{31}{3}+\frac{4}{9}-\frac{26}{3}\)
\(=\left(\frac{31}{3}-\frac{26}{3}\right)+\frac{4}{9}=\frac{5}{3}+\frac{4}{9}=\frac{15}{9}+\frac{4}{9}=\frac{19}{9}\)
b) \(\left[12,\left(1\right)-2,3\left(6\right)\right]:4,\left(21\right)\)
\(=\left[\frac{109}{9}-\frac{71}{30}\right]:\frac{139}{33}\)
\(=-\frac{52}{45}:\frac{139}{33}=-\frac{52}{45}\cdot\frac{33}{139}=-\frac{572}{2085}\)(số xấu quá)
c) \(3\frac{1}{2}\cdot\frac{4}{49}-\left[2,\left(4\right)\cdot2\frac{5}{11}\right]:\frac{-42}{53}\)
\(=\frac{7}{2}\cdot\frac{4}{49}-\left[\frac{22}{9}\cdot\frac{27}{11}\right]\cdot\frac{-53}{42}\)
\(=\frac{2}{7}-6\cdot\left(-\frac{53}{42}\right)=\frac{2}{7}-\left(-\frac{53}{7}\right)=\frac{2}{7}+\frac{53}{7}=\frac{55}{7}\)
a)
\(\begin{array}{l}{\left( {\frac{{ - 1}}{2}} \right)^5} = \frac{{{{\left( { - 1} \right)}^5}}}{{{2^5}}} = \frac{{ - 1}}{{32}};\\{\left( {\frac{{ - 2}}{3}} \right)^4} = \frac{{{{\left( { - 2} \right)}^4}}}{{{3^4}}} = \frac{{16}}{{81}};\\{\left( { - 2\frac{1}{4}} \right)^3} = {\left( {\frac{{ - 9}}{4}} \right)^3} = \frac{{{{\left( { - 9} \right)}^3}}}{{{4^3}}} = \frac{{-729}}{{64}};\\{\left( { - 0,3} \right)^5} = {\left( {\frac{{ - 3}}{{10}}} \right)^5} = \frac{{ - 243}}{{100000}};\\{\left( { - 25,7} \right)^0} = 1\end{array}\)
b)
\(\begin{array}{l}{\left( { - \frac{1}{3}} \right)^2} = \frac{1}{9};\\{\left( { - \frac{1}{3}} \right)^3} = \frac{{ - 1}}{{27}};\\{\left( { - \frac{1}{3}} \right)^4} = \frac{1}{{81}};\\{\left( { - \frac{1}{3}} \right)^5} = \frac{{ - 1}}{{243}}.\end{array}\)
Nhận xét:
+ Luỹ thừa của một số hữu tỉ âm với số mũ chẵn là một số hữu tỉ dương.
+ Luỹ thừa của một số hữu tỉ âm với số mũ lẻ là một số hữu tỉ âm.