\(\frac{2^2}{1.3}+\frac{3^2}{2.4}+\frac{4^2}{3.5}+...+\frac{2016^2}{2015.2017}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2016

A=4/3+9/8+16/15+..............+4064256/4064255

A=1+1/3+1+1/8+1/15+...............+1/4064255

A=(1+1+...+1)+(1/3+1/8+...+1/406255)          (có 2015 số 1)

A=2015+(1/1.3+1/2.4+...........+1/2015.2017)
A=2015+1/2(1/1-1/3+1/2-1/4+1/3-1/5+1/4-1/6+1/5-1/7+....+1/2012-1/2014+1/2013-1/2015+1/2014-1/2016+1/2015-1/2017)

A=2015+1/2(1+1/2-1/2016-1/2017)

A=2015,749504

                                k cho mình nhé mình k lại cho

9 tháng 4 2017

2A=\(\left(1+\frac{1}{3}\right)\)\(\left(1+\frac{1}{8}\right)\)\(\left(1+\frac{1}{15}\right)\)\(.......\)\(\left(1+\frac{1}{4064255}\right)\)

2A = \(\frac{4}{3}\)\(.\)\(\frac{9}{8}\)\(.\)\(\frac{16}{15}\)\(......\)\(\frac{4064256}{4064255}\)

2A = \(\frac{2.2}{1.3}\)\(.\)\(\frac{3.3}{2.4}\)\(.\)\(\frac{4.4}{3.5}\)\(......\)\(\frac{2016.2016}{2015.2017}\)

2A = \(\frac{2.3.4....2016}{1.2.3.....2015}\)\(.\)\(\frac{2.3.4....2016}{3.4.5....2017}\)

2A = \(\frac{2016}{1}\)\(.\)\(\frac{2}{2017}\)

2A = \(\frac{4032}{2017}\)

A = \(\frac{4032}{2017}\)\(:2\)

A = \(\frac{2016}{2017}\)

a: \(\Leftrightarrow\dfrac{x-214}{86}-1+\dfrac{x-132}{84}-2+\dfrac{x-54}{82}-3=0\)

=>x-300=0

hay x=300

9 tháng 8 2020

\(B=\frac{\left(2.3.4...150\right)\left(2.3.4...150\right)}{\left(1.2.3...149\right)\left(3.4.5...151\right)}\)

\(B=\frac{\left(1.2.3...149\right).150.2.\left(3.4.5...150\right)}{\left(1.2.3...149\right).\left(3.4.5...150\right).151}\)

\(B=\frac{300}{151}\)

9 tháng 8 2020

có thể giải kĩ hơn ko ?

a,A=\(\frac{1}{2}.\left(\frac{2.2}{1.3}.\frac{3.3}{2.4}......\frac{2016.2016}{2015.2017}\right)=\frac{1}{2}.\left(\frac{2.3.4...2016}{1.2....2015}.\frac{2.3.4...2016}{3.4....2017}\right)=\frac{1}{2}.\left(\frac{2016.2}{2017}\right)=\frac{4032}{4034}=\frac{2016}{2017}\)

Hok tốt

\(\left|x\right|=\frac{1}{2}\Rightarrow x=\orbr{\begin{cases}\frac{1}{2}\\-\frac{1}{2}\end{cases}}\)

TH1:\(x=\frac{1}{2}\)

\(\Rightarrow\frac{1}{2}-\frac{3}{2}+5=4\)

TH2:\(x=\frac{-1}{2}\)

\(\Rightarrow\frac{1}{2}+\frac{3}{2}+5=7\)

Vậy

24 tháng 3 2019

\(\Leftrightarrow N=\frac{\left(2.3.4....50\right)\left(2.3.4...........50\right)}{\left(1.2.3.........49\right)\left(3.4.5...........51\right)}=\frac{50.2}{51}=\frac{100}{51}\)

 \(\frac{2^2}{1.3}+\frac{3^2}{2.4}+\frac{4^2}{3.5}+....+\frac{50^2}{49.51}\)

\(=\frac{2^2-1}{1.3}+\frac{3^2-1}{2.4}+....+\frac{50^2-1}{49.51}+\frac{1}{1.3}+\frac{1}{2.4}+....+\frac{1}{49.51}\)

\(=\frac{1}{2}.\left(1+1+...+1\right)+\frac{1}{1}-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{49}-\frac{1}{51}\)

Tự làm tiếp :)) 

tớ nhầm đoạn này tí :((

\(=\left(1+1+....+1\right)+\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{51}\right)\)(49 chữ số 1)

\(=49+\frac{1}{2}.\left[\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{49}\right)-\left(\frac{1}{3}+\frac{1}{4}+...+\frac{1}{51}\right)\right]\)

\(=49+\left(\frac{3}{2}-\frac{1}{50}-\frac{1}{51}\right):2\)Tự tính 

17 tháng 6 2016

\(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.,,\frac{50^2}{49.51}\)

=\(\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}.,,\frac{50.50}{49.51}\)

=\(\frac{\left(2.3.4...50\right).\left(2.3.4...50\right)}{\left(1.2.3....49\right).\left(3.4.5....51\right)}\)

=\(\frac{50.2}{1.51}\)

=\(\frac{100}{51}\)

17 tháng 6 2016

\(=\frac{2.3.4...50}{1.2.3...49}.\frac{2.3.4...50}{3.4.5...51}=50.\frac{2}{51}=\frac{100}{51}\)

11 tháng 11 2015

Công thức tống quát:

\(1+\frac{1}{\left(n-1\right)\left(n+1\right)}=1+\frac{1}{n^2-1}=\frac{n^2-1+1}{n^2-1}=\frac{n^2}{n^2-1}\)

Theo đó, ta có:

\(1+\frac{1}{1.3}=1+\frac{1}{\left(2-1\right)\left(2+1\right)}=\frac{2^2}{2^2-1}\)

\(1+\frac{1}{2.4}=1+\frac{1}{\left(3-1\right)\left(3+1\right)}=\frac{3^2}{3^2-1}\)

\(1+\frac{1}{3.5}=\frac{1}{\left(4-1\right)\left(4+1\right)}=\frac{4^2}{4^2-1}\)

\(....................\)

\(1+\frac{1}{2015.2017}=1+\frac{1}{\left(2016-1\right)\left(2016+1\right)}=\frac{2016^2}{2016^2-1}\)

Nhân lần lượt các đẳng thức trên, ta được:

\(S=\frac{\left(2.3.4....2016\right)^2}{\left(2^2-1\right)\left(3^2-1\right)\left(4^2-1\right)...\left(2016^2-1\right)}=\frac{2^2.3^2.4^2...2016^2}{\left(1.3\right)\left(2.4\right)\left(3.5\right)....\left(2015.2017\right)}=\frac{2^2.3^2.4^2...2016^2}{1.2.3^2.4^2.5^2...2014^2.2015^2.2016.2017}=\frac{2.2016}{2017}\)