K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AD bằng 12 nha bạn

cách làm : xét 2 tam giác ABD và ACD có 

AB=AC ( Tam giác ABC cân tại A)

góc A1=góc A2 ( AD là p/g góc A)

AD chung

tóm lại tam giác ABD = ACD => BD=CD

mà BD + CD = BC = 10 cm

=> BD = 5 cm

Áp dung định lí pi ta go, ta có 

AB^2 = BD^2 + AD^2

thay số : 13 mũ 2 = 5 mũ 2 + AD^2

=> AD^2 = 144

=> AD = 12

30 tháng 6 2021

Xét tam giác ABC cân tại A, có:

AD là tia phân giác của góc ABC

=>AD đồng thời là đường trung trực=>\(DB=DC=\frac{BC}{2}=5cmv\text{à}g\text{ó}cADB=90^0\)

Xét tam giác ADB vuông tại D,có:

\(AB^2=DB^2+DA^2\)(định lý Pytago)

Hay \(13^2=5^2+DA^2\)

         \(169=25+DA^2\)

         \(DA^2=169-25=144\)

      =>DA= 12cm

17 tháng 4 2016

xét tam giác ABD và tam giác ACD có:

AB=AC

AD(chung)

BAD=CAD(gt)

suy ra tam giác ABD=ACD(c.g.c)

suy ra _ADB=ADC mà ADC+ADB=180 suy ra ADC=ADB=180/2=90

         |

          -DB=DC=1/2BC=5cm

vì AD là 1 đường trung tuyến của tam giác ABC, G là trọng tâm của tam giác ABC suy ra GD=1/3AD

ta có:\(AD^2=AB^2-BD^2=13^2-5^2=169-25=144\) 

\(AD=\sqrt{144}=12\left(cm\right)\)

GD=1/3AD=1/3x12=4(cm)

a: XétΔADB và ΔADC có

AD chung

DB=DC

AB=AC

Do đó: ΔABD=ΔACD

b: ta có: ΔABC cân tại A

mà AD là trung tuyến

nên AD là đường cao

c: BD=BC/2=5cm

nên AD=12cm

Sửa đề: AD là đường phân giác

a) Sửa đề: Chứng minh AD vuông góc với BC

Ta có: ΔABC cân tại A(Gt)

mà AD là đường phân giác ứng với cạnh đáy BC(gt)

nên AD là đường cao ứng với cạnh BC(Định lí tam giác cân)

hay AD\(\perp\)BC(Đpcm)

b) Ta có: ΔABC cân tại A(Gt)

mà AD là đường cao ứng với cạnh đáy BC(Cmt)

nên AD là đường trung tuyến ứng với cạnh BC(Định lí tam giác cân)

\(\Leftrightarrow\)D là trung điểm của BC

hay \(BD=\dfrac{BC}{2}=\dfrac{12}{2}=6\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABD vuông tại D, ta được:

\(AB^2=AD^2+BD^2\)

\(\Leftrightarrow AD^2=AB^2-BD^2=10^2-6^2=64\)

hay AD=8(cm)

Vậy: AD=8cm

2 tháng 3 2018

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!






!!!!!!!!!!!!!!!!111

2 tháng 3 2018

a, xét tam giác tam giác ADB và am giác ADC:

Ab=ac (gt)

ad chung

góc adc = góc adb=90 độ (gt)

b) Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

Do đó: ΔABD=ΔEBD(Cạnh huyền-góc nhọn)

Suy ra: BA=BE(hai cạnh tương ứng)

hay ΔBAE cân tại B

c) Xét ΔADF vuông tại A và ΔEDC vuông tại E có 

DA=DE(ΔABD=ΔEBD)

\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)

Do đó: ΔADF=ΔEDC(cạnh góc vuông-góc nhọn kề)

Suy ra: DF=DC(hai cạnh tương ứng)

mà DE<DC(ΔDEC vuông tại E)

nên DE<DF