Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét tam giác ABD và tam giác ACD có:
AB=AC
AD(chung)
BAD=CAD(gt)
suy ra tam giác ABD=ACD(c.g.c)
suy ra _ADB=ADC mà ADC+ADB=180 suy ra ADC=ADB=180/2=90
|
-DB=DC=1/2BC=5cm
vì AD là 1 đường trung tuyến của tam giác ABC, G là trọng tâm của tam giác ABC suy ra GD=1/3AD
ta có:\(AD^2=AB^2-BD^2=13^2-5^2=169-25=144\)
\(AD=\sqrt{144}=12\left(cm\right)\)
GD=1/3AD=1/3x12=4(cm)
a: XétΔADB và ΔADC có
AD chung
DB=DC
AB=AC
Do đó: ΔABD=ΔACD
b: ta có: ΔABC cân tại A
mà AD là trung tuyến
nên AD là đường cao
c: BD=BC/2=5cm
nên AD=12cm
Sửa đề: AD là đường phân giác
a) Sửa đề: Chứng minh AD vuông góc với BC
Ta có: ΔABC cân tại A(Gt)
mà AD là đường phân giác ứng với cạnh đáy BC(gt)
nên AD là đường cao ứng với cạnh BC(Định lí tam giác cân)
hay AD\(\perp\)BC(Đpcm)
b) Ta có: ΔABC cân tại A(Gt)
mà AD là đường cao ứng với cạnh đáy BC(Cmt)
nên AD là đường trung tuyến ứng với cạnh BC(Định lí tam giác cân)
\(\Leftrightarrow\)D là trung điểm của BC
hay \(BD=\dfrac{BC}{2}=\dfrac{12}{2}=6\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABD vuông tại D, ta được:
\(AB^2=AD^2+BD^2\)
\(\Leftrightarrow AD^2=AB^2-BD^2=10^2-6^2=64\)
hay AD=8(cm)
Vậy: AD=8cm
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!111
a, xét tam giác tam giác ADB và am giác ADC:
Ab=ac (gt)
ad chung
góc adc = góc adb=90 độ (gt)
b) Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
Do đó: ΔABD=ΔEBD(Cạnh huyền-góc nhọn)
Suy ra: BA=BE(hai cạnh tương ứng)
hay ΔBAE cân tại B
c) Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE(ΔABD=ΔEBD)
\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔADF=ΔEDC(cạnh góc vuông-góc nhọn kề)
Suy ra: DF=DC(hai cạnh tương ứng)
mà DE<DC(ΔDEC vuông tại E)
nên DE<DF
AD bằng 12 nha bạn
cách làm : xét 2 tam giác ABD và ACD có
AB=AC ( Tam giác ABC cân tại A)
góc A1=góc A2 ( AD là p/g góc A)
AD chung
tóm lại tam giác ABD = ACD => BD=CD
mà BD + CD = BC = 10 cm
=> BD = 5 cm
Áp dung định lí pi ta go, ta có
AB^2 = BD^2 + AD^2
thay số : 13 mũ 2 = 5 mũ 2 + AD^2
=> AD^2 = 144
=> AD = 12
Xét tam giác ABC cân tại A, có:
AD là tia phân giác của góc ABC
=>AD đồng thời là đường trung trực=>\(DB=DC=\frac{BC}{2}=5cmv\text{à}g\text{ó}cADB=90^0\)
Xét tam giác ADB vuông tại D,có:
\(AB^2=DB^2+DA^2\)(định lý Pytago)
Hay \(13^2=5^2+DA^2\)
\(169=25+DA^2\)
\(DA^2=169-25=144\)
=>DA= 12cm