K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2016

máy tính cầm tay 

-0,9353871629

29 tháng 10 2021

\(VT=\dfrac{\sin25^0}{\cos25^0}+2\left(\sin^215^0+\cos^215^0\right)-\tan25^0+4\cdot\dfrac{1}{2}\\ =\tan25^0+2\cdot1-\tan25^0+2=4\)

10 tháng 11 2018

áp dụng \(sin^2a+\cos^2a=1\)

ta có \(\sin^275^o+sin^215^o-\cos^250^o-\cos^240^o+\)\(cot45^o.cot45^o\)\(=sin^275^o+\cos^275^o-\left(\cos^250^o+sin^250^o\right)\)\(+cot^245^o\)\(=1-1+1=1\)

vì đây là tam giác vuông, hai góc nhọn phụ nhau nên sin góc này bằng cosin góc kia

29 tháng 6 2019

\(ADCT:\sin^2\alpha+\cos^2\alpha=1\)

\(A=\left(\sin^242^0+\sin^248^0\right)+\left(\sin^243^0+\sin^247^0\right)+\left(\sin^244^0+\sin^246^0\right)+\sin45^0\)

\(A=\left(\sin^242^0+\cos^242^0\right)+\left(\sin^243^0+\cos^243^0\right)+\left(\sin^244^0+\cos^244^0\right)+\frac{\sqrt{2}}{2}\)

\(A=1+1+1+\frac{\sqrt{2}}{2}=\frac{6+\sqrt{2}}{2}\)

Câu b lm tương tự

15 tháng 8 2017

a, \(\cos^215+\cos^225+\cos^235+\cos^245+\sin^235+\sin^225+\sin^215\)

=\(\left(\cos^215+\sin^215\right)+\left(\cos^225+\sin^225\right)+\left(\cos^235+\sin^235\right)+\cos^245\)

=\(1+1+1+\frac{1}{2}=\frac{7}{2}\)

b.\(\sin^210-\sin^220-\sin^230-\sin^240-\cos^240-\cos^220+\cos^210\)

=\(\left(\sin^210+\cos^210\right)-\left(\sin^220+\cos^220\right)-\left(\sin^240+\cos^240\right)-\sin^230\)

=\(1-1-1-\frac{1}{4}=-\frac{5}{4}\)

c,\(\sin15+\sin75-\sin75-\cos15+\sin30=\sin30=\frac{1}{2}\)

Y
24 tháng 7 2019

\(=cos^2\left(90^o-35^o\right)+sin^255^o+cot\left(90^o-17^o\right)-cot73^o-\frac{tan\left(90^o-47^o\right)}{tan53^o}\)

\(=cos^255^o+sin^255^o+cot73^o-cot73^o-\frac{tan53^o}{tan53^o}\)

\(=1-1=0\)