K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2017

\(A=x^3+3x^3+3x\)

\(=4x^3+3x\)

Với x=19 thì giá trị của A là

\(A=4.19^3+3.19=27493\)

Vậy....

\(B=a^3-3a^2+1\\ =101^3-3.101^2+1\\ =\left(100+1\right)^3-3\left(100+1\right)^2+1\\ =\left(100+1\right)\left(100^2-100+1\right)-3\left(100^2+2.100+1\right)+1\\ =999699\)

Vậy...

18 tháng 9 2017

đúng ko vậy bạnhihi

7 tháng 7 2018

Thực hiện phép tính đối với vế trái của mỗi đẳng thức.

3 tháng 10 2018

a) Ta có x 6 + 2 x 3 + 3 x 3 − 1 . 3 x x + 1 . x 2 + x + 1 x 6 + 2 x 3 + 3 = 3 x x 2 − 1  

b) Gợi ý: a 3   +   2 a 2  - a - 2 = (a - 1)(a + 1) (a + 2)

Thực hiện phép tính từ trái qua phải thu được:  = 1 3

8 tháng 10 2021

\(a,=\left(x+3\right)^3=\left(-3+3\right)^3=0\\ b,=27x^3+1-\left(1-27x^3\right)=27x^3+1-1+27x^3=54x^3\\ =54\cdot10^3=54\cdot1000=54000\)

c, hình như sai đề á e

28 tháng 9 2017

b: \(N=a^3-3a^2-a\left(3-a\right)\)

\(=a^2\left(a-3\right)+a\left(a-3\right)\)

\(=a\left(a-3\right)\left(a+1\right)\)

24 tháng 9 2021

a) M = x2 (x + y) - x2y - x3 tại x = - 2017 và y = 2017

 M=  \(x^3+x^2y-x^2y-x^3\)

M = 0

23 tháng 8 2018

Ta có:

P = x 3 - 3 x 2 + 3 x - 1 + 1       = x - 1 3 + 1 T h a y   x = 101   v à o   P   t a   đ ư ợ c   P = 101 - 1 3 + 1       =   100 3 + 1                        

Đáp án cần chọn là :A

19 tháng 6 2018

a) Sắp xếp đa thức - 3 x 3   +   5 x 2  – 9x + 15 và -3x + 5.

Thực hiện phép chia thu được đa thức thương x 2  + 3.

b) Sắp xếp đa thức  x 3  – 4 x 2  + 5x – 20.

Thực hiện phép chia thu được đa thức thương  x 2  + 5.

24 tháng 12 2021

\(A=BQ+R\\ \Leftrightarrow A:B=Q\left(\text{dư }R\right)\)

Ta có \(A:B=\left(2x^4+3x^3-5x^2-11x+8\right):\left(x^3-3x+1\right)\)

\(\Leftrightarrow A:B=\left(2x^4-6x^2+2x+3x^3-9x^2+3x+10x^2-16x+8\right):\left(x^3-3x+1\right)\\ \Leftrightarrow A:B=\left[\left(x^3-3x+1\right)\left(2x+3\right)+10x^2-16x+8\right]:\left(x^3-2x+1\right)\\ =2x+3\left(\text{dư }10x^2-16x+8\right)\\ \Leftrightarrow\left\{{}\begin{matrix}Q=2x+3\\R=10x^2-16x+8\end{matrix}\right.\)

NV
7 tháng 3 2020

1.

a/ \(\Leftrightarrow\left(x+1\right)\left(x^2+3x+2\right)+\left(x-1\right)\left(x^2-3x+2\right)-12=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+2\right)+3x\left(x+1\right)-3x\left(x-1\right)+\left(x-1\right)\left(x^2+2\right)-12=0\)

\(\Leftrightarrow2x\left(x^2+2\right)+6x^2-12=0\)

\(\Leftrightarrow x^3+3x^2+2x-6=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+4x+6\right)=0\Rightarrow x=1\)

b/ Nhận thấy \(x=0\) ko phải nghiệm, chia 2 vế cho \(x^2\)

\(x^2+\frac{1}{x^2}+3\left(x+\frac{1}{x}\right)+4=0\)

Đặt \(x+\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2-2\)

\(t^2-2+3t+4=0\Rightarrow t^2+3t+2=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=-2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+\frac{1}{x}=-1\\x+\frac{1}{x}=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2+x+1=0\left(vn\right)\\x^2+2x+1=0\end{matrix}\right.\) \(\Rightarrow x=-1\)

NV
7 tháng 3 2020

1c/

\(\Leftrightarrow x^5+x^4-2x^4-2x^3+5x^3+5x^2-2x^2-2x+x+1=0\)

\(\Leftrightarrow x^4\left(x+1\right)-2x^3\left(x+1\right)+5x^2\left(x+1\right)-2x\left(x+1\right)+x+1=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^4-2x^3+5x^2-2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x^4-2x^3+5x^2-2x+1=0\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow x^4-2x^3+x^2+x^2-2x+1+3x^2=0\)

\(\Leftrightarrow\left(x^2-x\right)^2+\left(x-1\right)^2+3x^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-x=0\\x-1=0\\x=0\end{matrix}\right.\) \(\Rightarrow\) không tồn tại x thỏa mãn

Vậy pt có nghiệm duy nhất \(x=-1\)