Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
e: \(f\left(-x\right)=\dfrac{\left(-x\right)^4+3\cdot\left(-x\right)^2-1}{\left(-x\right)^2-4}=\dfrac{x^4+3x^2-1}{x^2-4}=f\left(x\right)\)
Vậy: f(x) là hàm số chẵn
\(c,f\left(-x\right)=\sqrt{-2x+9}=-f\left(x\right)\)
Vậy hàm số lẻ
\(d,f\left(-x\right)=\left(-x-1\right)^{2010}+\left(1-x\right)^{2010}\\ =\left[-\left(x+1\right)\right]^{2010}+\left(x-1\right)^{2010}\\ =\left(x+1\right)^{2010}+\left(x-1\right)^{2010}=f\left(x\right)\)
Vậy hàm số chẵn
\(g,f\left(-x\right)=\sqrt[3]{-5x-3}+\sqrt[3]{-5x+3}\\ =-\sqrt[3]{5x+3}-\sqrt[3]{5x-3}=-f\left(x\right)\)
Vậy hàm số lẻ
\(h,f\left(-x\right)=\sqrt{3-x}-\sqrt{3+x}=-f\left(x\right)\)
Vậy hàm số lẻ
\(\dfrac{123}{456}\cdot\left(\dfrac{2010}{2011}-\dfrac{2011}{2010}\right)-\left(\dfrac{2009}{2010}-\dfrac{1}{2011}\right):\dfrac{456}{123}\)
\(=\dfrac{123}{456}\cdot\left(\dfrac{2010}{2011}-\dfrac{2011}{2010}\right)-\left(\dfrac{2009}{2010}-\dfrac{1}{2011}\right)\cdot\dfrac{123}{456}\)
\(=\dfrac{123}{456}\left[\left(\dfrac{2010}{2011}-\dfrac{2011}{2010}\right)-\left(\dfrac{2009}{2010}-\dfrac{1}{2011}\right)\right]\)
\(=\dfrac{123}{456}\left(\dfrac{2010}{2011}-\dfrac{2011}{2010}-\dfrac{2009}{2010}+\dfrac{1}{2011}\right)\)
\(=\dfrac{123}{456}\left[\left(\dfrac{2010}{2011}+\dfrac{1}{2011}\right)-\left(\dfrac{2011}{2010}+\dfrac{2009}{2010}\right)\right]\)
\(=\dfrac{123}{456}\left(1-2\right)\)
\(=-\dfrac{123}{456}\)
ĐK : x>0
Đặt \(\sqrt{2010+\sqrt{x}}=t\left(t>0\right)\Rightarrow t^2=2010+\sqrt{x}\)
\(Pt\Rightarrow x+\sqrt{x}=t^2+t\)
Xét hàm số \(f\left(a\right)=a^2+a\) là hàm đồng biến \(\forall a>0\)
\(f\left(\sqrt{x}\right)=f\left(t\right)\Rightarrow x=t^2\Leftrightarrow x-\sqrt{x}-2010=0\\ \Leftrightarrow x=\left(\dfrac{1+\sqrt{8041}}{2}\right)^2\)
Lời giải:
Áp dụng BĐT AM-GM:
\(\sqrt{x-2}=\sqrt{(x-2).1}\leq \frac{x-2+1}{2}\)
\(\sqrt{y+2009}=\sqrt{(y+2009).1}\leq \frac{y+2009+1}{2}\)
\(\sqrt{z-2010}=\sqrt{(z-2010).1}\leq \frac{z-2010+1}{2}\)
Cộng theo vế suy ra :
\(\sqrt{x-2}+\sqrt{y+2009}+\sqrt{z-2010}\leq \frac{x+y+z}{2}\)
Dấu bằng xảy ra khi \(x-2=y+2009=z-2010=1\Leftrightarrow \left\{\begin{matrix} x=3\\ y=-2008\\ z=2011\end{matrix}\right.\)
Đặt \(x^{670}=a\ge0\)
\(a^3-2011a+\sqrt{2010}=0\)
\(\Leftrightarrow\left(a-\sqrt{2010}\right)\left(a^2+\sqrt{2010}a-1\right)=0\)
Bạn tự giải tiếp