Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Hà Văn Minh Hiếu - Toán lớp 8 - Học toán với OnlineMath
Ta có : \(a+b+c=6\)
\(\Rightarrow\left(a+b+c\right)^2=36\)
\(\Rightarrow a^2+b^2+c^2+2.\left(ab+bc+ca\right)=36\)
\(\Rightarrow a^2+b^2+c^2=36-2.12=12\)
Do đó : \(a^2+b^2+c^2=ab+bc+ca\left(=12\right)\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
Khi đó biểu thức :
\(\left(a-b\right)^{2012}+\left(b-c\right)^{2013}+\left(c-a\right)^{2014}=0+0+0=0\)
Ta có: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)
\(=2a^2+2b^2+2c^2-2ab-2bc-2ac\)
\(=2\left(a^2+b^2+c^2+2ab+2ac+2bc\right)-6ab-6bc-6ac\)
\(=2\left(a+b+c\right)^2-6\left(ab+bc+ac\right)\)
\(=2.6^2-6.12=0\)
Mà : \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(a-c\right)^2\ge0\)
nên \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
Do đó: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
<=> \(\hept{\begin{cases}\left(a-b\right)^2=0\\\left(a-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\Leftrightarrow a=b=c\)
Vậy \(\left(a-b\right)^{2012}+\left(b-c\right)^{2013}+\left(c-a\right)^{2014}=0\)
Ta có\(\left(a-b\right)^2=\left(a+b\right)^2-4ab\)
\(=49-48\)
\(=1\)
Mà \(a>b\Rightarrow a-b>0\)
\(\Rightarrow a-b=1\)
\(\Rightarrow\left(a-b\right)^{2009}=1\)
Vì a < b, a + b = 7, a . b = 12 nên a = 3 , b = 4
Khi đó : \(\left(a-b\right)^{2009}=\left(3-4\right)^{2009}=-1\)
Các bước biển đổi:
\(a^{12}+b^{12}=a^{12}+a^{11}.b+a.b^{11}+b^{12}-a^{11}.b-a.b^{11}\)
\(=a^{11}\left(a+b\right)+b^{11}\left(a+b\right)-ab\left(a^{10}+b^{10}\right)\)
\(a^{12}+b^{12}=\left(a+b\right)\left(a^{11}+b^{11}\right)-ab\left(a^{10}+b^{10}\right)\) \(\left(1\right)\)
Vì \(a^{10}+b^{10}=a^{11}+b^{11}=a^{12}+b^{12}\) (theo giả thiết)
nên từ \(\left(1\right)\) \(\Rightarrow\) \(a^{12}+b^{12}=\left(a+b\right)\left(a^{12}+b^{12}\right)-ab\left(a^{12}+b^{12}\right)\)
\(\Leftrightarrow\) \(a^{12}+b^{12}=\left(a^{12}+b^{12}\right)\left(a+b-ab\right)\)
\(\Leftrightarrow\) \(a+b-ab=1\)
\(\Leftrightarrow\) \(a-ab+b-1=0\)
\(\Leftrightarrow\) \(a\left(1-b\right)-\left(1-b\right)=0\)
\(\Leftrightarrow\) \(\left(1-b\right)\left(a-1\right)=0\)
\(\Leftrightarrow\) \(1-b=0\) hoặc \(a-1=0\)
\(\Leftrightarrow\) \(a=1\) hoặc \(b=1\)
\(\text{*)}\) Nếu \(a=1\) thì \(b^{10}=b^{11}=b^{12}\) và \(b>0\) nên \(b=1\)
\(\text{*)}\) Tương tự với trường hợp \(b=1\) thì \(a^{10}=a^{11}=a^{12}\) và \(a>0\) nên ta cũng được \(a=1\)
Do đó, \(a=b=1\)
Vậy, \(a^{2012}+b^{2012}=1^{2012}+1^{2012}=1+1=2\)
a) Ta dùng hằng đẳng thức: \(\left(a-b\right)^2=\left(a+b\right)^2-4ab\) (1)
Thay a+b=7 và ab=12 vào (1) ta được:
\(\left(a-b\right)^2=7^2-4.12=49-48=1\)
Vậy:.....
b) Ta dùng hằng đẳng thức: \(\left(a+b\right)^2=\left(a-b\right)^2+4ab\) (2)
Thay a-b=6 và ab = 3 vào (2) ta được:
\(\left(a+b\right)^2=6^2+4.3=36+12=48\)
Vậy:....
c) Dùng hằng đẳng thức: \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\) (3)
Thay ab = 6 và a+b = -5 vào (3) ta được:
\(a^3+b^3=\left(-5\right)^3-3.6\left(-5\right)=-125-90=-215\)
Vậy......
a) Rút gọn M = 279. Với m = 2017 giá trị của M = 279.
b) N = 8 a 3 - 27 b 3 = ( 2 a ) 3 - ( 3 b ) 3 = ( 2 a - 3 b ) 3 + 3.2a.3b.(2a - 3b)
Thay a.b = 12;2a - 3b = 5 ta thu được N - 1205.
c) Cách 1: Từ a + b = 1 Þ a = 1 - b thế vào K.
Thực hiện rút gọn K, ta có kết quả K = 1.
Cách 2: Tìm cách đưa biêu thức về dạng a + b.
a 3 + b 3 = ( a + b ) 3 – 3ab(a + b) = 1 - 3ab;
6 a 2 b 2 (a + b) = 6 a 2 b 2 kết hợp với 3ab( a 2 + b 2 ) bằng cách đặt 3ab làm nhân tử chung ta được 3ab( a 2 + 2ab + b 2 ) = 3ab.
Thực hiện rút gọn K = 1.
a+b=7
=> a=4,b=3 hoặc a=3,b=4 =>(a-b)2012=1
ab=12