Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=1+\left(-3\right)+5+\left(-7\right)+...+\left(-1999\right)+2001\)
Số số hạng của tổng trên là: \(\frac{2001-1}{2}+1=1001\).
\(A=\left[1+\left(-3\right)\right]+\left[5+\left(-7\right)\right]+...+\left[1997+\left(-1999\right)\right]+2001\)
\(A=-2.500+2001\)
\(A=1001\)
b) \(1+\left(-2\right)+\left(-3\right)+4+5+\left(-6\right)+\left(-7\right)+8+...+1997+\left(-1998\right)+\left(-1999\right)+2000\)
\(=\left\{\left[1+\left(-2\right)\right]+\left[\left(-3\right)+4\right]\right\}+...+\left\{\left[1997+\left(-1998\right)\right]+\left[\left(-1999\right)+2000\right]\right\}\)
\(=\left(-1+1\right)+\left(-1+1\right)+...+\left(-1+1\right)\)
\(=0+0+...+0=0\)
1, S1 = (-2) + (-2) +..+ (-2).
Có SS (-2) là :
(1997 - 1) : 4 +1 = 500 (số ).
Tổng số (-2) là: 500 x (-2) = (-1000)
Bạn chờ mình làm tiếp nha
Các bạn ơi làm giúp mình vs ạ,mình đang cần gấp lắm rồi!!!!HELP MEEEEEEEEEEEEEE
\(1+2-3-4+5+6-7-8+...+1997+1998-1999+2000\)
\(=\left(1+2-3-4\right)+...+\left(1997+1998-1999-2000\right)\)
\(=\left(-4\right)+\left(-4\right)+...+\left(-4\right)\)
\(=\left(-4\right).500\)
\(=\left(-2000\right)\)
Ta có: 1-2-3+4+5-6-7+...+1997-1998-1999+2000+2001
=(1-2-3)+[4+(5-6-7)]+[8+(9-10-11)]+...+[1996+(1997-1998-1999)]+(2000+2001)
Từ 4 đến 1999 có số số hạng là: (1999-4):1+1=1996(số hạng)
= -4 + [4+(-8)] + [8+(-12)] + [12+(-16)] + ... + [1996+(-2000] + 4001
= -4 + (-4) + (-4) + (-4) + ... + (-4) + 4001
= -4 + (-4).(1996:4) + 4001
= -4 + (-4).499 + 4001
= -4.500 + 4001
= -2000 + 4001
= 2001
Nhớ k
Lời giải:
$A=(21-23)+(25-27)+....+(2021-2023)$
$=(-2)+(-2)+...+(-2)$
Số lần xuất hiện của $-2$ là: $[(2023-21):2+1]:2=501$
$A=501(-2)=-1002$
$B=(1-2-3+4)+(5-6-7+8)+....+(1997-1998-1999+2000)$
$=0+0+0+...+0=0$