Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
2n + 5 chia hết cho 3n + 1
=> 3(2n + 5 ) chia hết cho 3n + 1
=> 6n + 15 chia hết cho 3n + 1 (1)
3n + 1 chia hết cho 3n + 1
=> 2 ( 3n + 1 ) chia hết cho 3n + 1
=> 6n + 2 chia hết cho 3n + 1 (2)
Từ (1) và (2), suy ra:
(6n + 15) - ( 6n + 2 ) chia hết cho 3n + 1
=> 13 chia hết cho 3n + 1
=> 3n + 1 thuộc Ư(13)
=> 3n + 1 {1; 13; -1; -13}
Ta có bẳng sau :
3n + 1 | 1 | 13 | -1 | -13 |
n thuộc Z | 0 | 4 | \(\frac{-2}{3}\) loại | -4 |
Vậy n thuộc { 0; 4; -4}
Tích mình mình tích lại.
Ta gọi tử của phân số B là A ta có:
A=1+2+2^2+2^3+...+2^2008
2A=2 + 2^2 + 2^3 + 2^4 +... + 2^2009
=>A=2^2009 - 1
A=-1 + 2^2009
ta thấy tử là số đối của mẫu =>B=\(\dfrac{-1}{1}\)
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)
\(\rightarrow A=\frac{3}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)
\(\rightarrow A=\frac{7}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)
\(\rightarrow A=\frac{15}{16}+\frac{1}{32}+\frac{1}{64}\)
\(\rightarrow A=\frac{31}{32}+\frac{1}{64}\)
\(\rightarrow A=\frac{63}{64}\)
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\Rightarrow64A=32+16+8+4+2+1\Rightarrow64A=63\Rightarrow A=\frac{63}{64}\)
Bài 4:
$A+2=1+2+2^2+2^3+...+2^{11}$
$=(1+2)+(2^2+2^3)+....+(2^{10}+2^{11})$
$=(1+2)+2^2(1+2)+....+2^{10}(1+2)$
$=(1+2)(1+2^2+....+2^{10})$
$=3(1+2^2+...+2^{10})\vdots 3$
Vậy $A+2\vdots 3$ nên $A$ không chia hết cho $3$
Bài 5:
$n^2+n+1=n(n+1)+1$
Vì $n,n+1$ là hai số tự nhiên liên tiếp nên sẽ tồn tại một số chẵn và 1 số lẻ
$\Rightarrow n(n+1)$ chẵn
$\Rightarrow n^2+n+1=n(n+1)+1$ lẻ (điều phải chứng minh)
a: A=2/9(9+99+...+99..99)
=2/9(10-1+10^2-1+...+10^22-1)
=2/9[10+10^2+...+10^22-22]
Đặt B=10+10^2+...+10^22
=>10B=10^2+10^3+...+10^23
=>B=(10^23-10)/9
=>\(A=\dfrac{2}{9}\cdot\left(\dfrac{10^{23}-10}{9}-22\right)\)
=>\(A=\dfrac{2\cdot10^{23}-416}{81}\)
Ta có : \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2015}{2016}\)
\(\Rightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2015}{2016}\)
\(\Rightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2015}{2016}\)
\(\Rightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2015}{2016}\)
\(\Rightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2015}{2016}\)
\(\Rightarrow1-\frac{2}{x+1}=\frac{2015}{2016}\)
\(\Rightarrow\frac{2}{x+1}=\frac{1}{2016}\)
=> x + 1 = 2016 . 2
=> x + 1 = 4032
=> x = 4031
Vậy x = 4031
dúng xích ma
\(\text{∑}^{100}_2\left(\frac{1}{x^2}\right)\)kq tự tính