Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}+\frac{1}{2018.2019}\)
\(S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}+\frac{1}{2018}-\frac{1}{2019}\)
( gạch bỏ các phân số giống nhau)
\(S=1-\frac{1}{2019}\)
\(S=\frac{2018}{2019}\)
CHÚC BN HỌC TỐT!!!!
S=1/1.2+1/2.3+1/3.4+............1/2017.2018+1/2018.2019
S=1/2.(1+1/3.2+1/3.2+.............1/2017.1009+1/1009.2019)
S=1/4.(2+2/3.2+2/3.2+..............2/2017.1009+2/1009.2019)
S=1/4.(1-1/2+1/2-1/3+1/3+..........+1/1009-1/1009+1/2019)
S=1/4.(1-1/2019)
S=1/4.2018/2019=1009/4038
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018+2019}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2018}-\frac{1}{2019}\)
=\(1-\frac{1}{2019}< 1\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2018}-\frac{1}{2019}\)
\(A=\frac{1}{1}-\frac{1}{2019}< 1\)
Vậy \(A< 1\)
Tính: \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2017.2018}+\dfrac{1}{2018.2019}\)
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2017.2018}+\dfrac{1}{2018.2019}\\ =\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2017}-\dfrac{1}{2018}+\dfrac{1}{2018}-\dfrac{1}{2019}\\ =1-\dfrac{1}{2019}\\ =\dfrac{2019-1}{2019}=\dfrac{2018}{2019}\)
\(\text{#}HaimeeOkk\)
\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{2018.2019}+\dfrac{1}{2019.2020}\)
\(A=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{2018}-\dfrac{1}{2019}+\dfrac{1}{2019}-\dfrac{1}{2020}\)
\(A=1-\left(\dfrac{1}{2}-\dfrac{1}{2}\right)-\left(\dfrac{1}{3}-\dfrac{1}{3}\right)-\left(\dfrac{1}{4}-\dfrac{1}{4}\right)-...-\left(\dfrac{1}{2019}-\dfrac{1}{2019}\right)-\dfrac{1}{2020}\)
\(A=1-0-0-0-...-0-\dfrac{1}{2020}\)
\(A=1-\dfrac{1}{2020}\)
\(A=\dfrac{2019}{2020}\)
Vậy \(A=\dfrac{2019}{2020}\)
gọi biểu thức trên là A A=1/1 -1/2+1/3-1/4+...+1/2017-12018+1/2018-1/2019 A=1/1-1/2019 A=2018/2019
1/1.2+1/2.3+1/3.4+1/4.5+...+1/2017.2018+1/2018.2019
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2017}-\frac{1}{2018}+\frac{1}{2018}-\frac{1}{2019}\)
\(=1-\frac{1}{2019}\)
\(=\frac{2019}{2019}-\frac{1}{2019}\)
\(=\frac{2018}{2019}\)
\(A=1.2+2.3+3.4+...+2018.2019\)
\(3A=1.2.3+2.3.3+3.4.3+...+2018.2019.3\)
\(3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+2018.2019.\left(2020-2017\right)\)
\(3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+2018.2019.2020-2017.2018.2019\)
\(3A=2018.2019.2020\)
\(A=2018.673.2020\)
\(A=2743390280\)
Chúc bạn học tốt ~
Đặt A = 1x2 + 2x3 + 3x4 + ... + 99 x 100
3A = 1x2x3 + 2x3x3 + ... + 99x100x3
3A = 1x2x( 3 - 0 ) + 2x3x(4 - 1 ) +...+ 99x100x(101 - 98)
3A = ( 1x2x3 + 2x3x4 + ... + 99x100x101 ) - ( 0x1x2 + 1x2x3 +...+ 98x99x100)
3A = 99x100x101 - 0x1x2
3A = 99x100x101 - 0
A = 99x100x101 : 3
A = 333300
Vậy A = 3333000
=3*(1/1.2+1/2.3+...+1/2018.2019)
=3(1-1/2+1/2-1/3+...+1/2018-1/2019)
=3(1-1/2019)
=3*2018/2019
=2018/673
\(A=\frac{3}{1.2}+\frac{3}{2.3}+...+\frac{3}{2018.2019}\)
\(=3.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}\right)\)
\(=3.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2018}-\frac{1}{2019}\right)\)
\(=3.\left(1-\frac{1}{2019}\right)\)
\(=3.\frac{2018}{2019}=\frac{2018}{673}\)
3C=1.2.3+2.3.(4-1)+3.4.(5-2)+...+2014.2015.(2016-2013)
3C=2014.2015.2016
C=2014.2015.2016:3
1 1.2 + 1 2.3 + 1 3.4 + ... + 1 2018.2019 = 2 − 1 1.2 + 3 − 2 2.3 + ... + 2019 − 2018 2018.2019 = 1 1 − 1 2 + 1 2 − 1 3 + ... + 1 2018 − 1 2019 = 1 − 1 2019 = 2018 2019