Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)
\(\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}=\dfrac{5x-5}{10}=\dfrac{3y+9}{12}=\dfrac{4z-20}{24}\)
\(\Rightarrow\dfrac{\left(5x-3y-4z\right)-\left(5+9-20\right)}{10-12-24}=\dfrac{46+6}{-26}=-2\)
\(\Rightarrow x-1=-4\Rightarrow x=-3\)
\(\Rightarrow y+3=-8\Rightarrow y=-11\)
\(\Rightarrow z-5=-12\Rightarrow-7\)
\(\dfrac{x+1}{2}=\dfrac{y-5}{3}=\dfrac{z-4}{4}=\dfrac{x+1+y-5-z+4}{2+3-4}\)
\(=\dfrac{7}{1}=7\)
\(\Rightarrow\left\{{}\begin{matrix}x=7.2-1=13\\y=7.3+5=26\\z=7.4+4=32\end{matrix}\right.\)
Áp dụng t/c dtsbn:
\(\dfrac{x+1}{2}=\dfrac{y-5}{3}=\dfrac{z-4}{4}=\dfrac{x+1+y-5-z+4}{2+3-4}=\dfrac{7+1+4-5}{1}=7\\ \Rightarrow\left\{{}\begin{matrix}x+1=14\\y-5=21\\z-4=28\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=13\\y=26\\z=32\end{matrix}\right.\)
a, \(\frac{2}{3}x=\frac{3}{4}y=\frac{4}{5}z\)
\(\Rightarrow\frac{2x}{3.12}=\frac{3y}{4.12}=\frac{4z}{5.12}\)
\(\Rightarrow\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=\frac{x+y+z}{18+16+15}=\frac{45}{49}\)
Đến đây tự làm tiếp nhé
b, \(2x=3y=5z\Rightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y-z}{15+10-6}=\frac{95}{19}=5\)
=> x = 75, y = 50, z = 30
c, \(\frac{3}{4}x=\frac{5}{7}y=\frac{10}{11}z\)
\(\Rightarrow\frac{3x}{4.30}=\frac{5y}{7.30}=\frac{10z}{11.30}\)
\(\Rightarrow\frac{x}{40}=\frac{y}{42}=\frac{z}{33}\)
\(\Rightarrow\frac{2x}{80}=\frac{3y}{126}=\frac{4z}{132}=\frac{2x-3y+4z}{80-126+132}=\frac{8,6}{86}=\frac{1}{10}\)
=> x=... , y=... , z=...
d, Đặt \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow x=2k,y=5k\)
Ta có: xy = 90 => 2k.5k = 90 => 10k2 = 90 => k2 = 9 => k = 3 hoặc -3
Với k = 3 => x = 6, y = 15
Với k = -3 => x = -6, y = -15
Vậy...
e, Tương tự câu d
b) Ta có :\(\text{ 2x = 3y = 5z }=\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x+y-z}{\frac{1}{2}+\frac{1}{3}-\frac{1}{5}}=\frac{95}{\frac{19}{30}}=\frac{1}{6}\)
=> \(2x=\frac{1}{6}\Rightarrow x=\frac{1}{12}\)
\(3y=\frac{1}{6}\Rightarrow y=\frac{1}{18}\)
\(5z=\frac{1}{6}\Rightarrow z=\frac{1}{30}\)
\(\left\{{}\begin{matrix}xy=\dfrac{1}{2}\\yz=\dfrac{3}{5}\\zx=\dfrac{27}{10}\end{matrix}\right.\Rightarrow xyyzzx=\dfrac{1}{2}\cdot\dfrac{3}{5}\cdot\dfrac{27}{10}\Leftrightarrow\left(xyz\right)^2=\dfrac{81}{100}\)
\(\Rightarrow\left[{}\begin{matrix}xyz=-\dfrac{9}{10}\\xyz=\dfrac{9}{10}\end{matrix}\right.\)
+ Khi \(xyz=-\dfrac{9}{10}\)
\(\Rightarrow\left\{{}\begin{matrix}z=-\dfrac{9}{10}:\dfrac{1}{2}=-\dfrac{9}{5}\\x=-\dfrac{9}{10}:\dfrac{3}{5}=-\dfrac{3}{2}\\y=-\dfrac{9}{10}:\dfrac{27}{10}=-\dfrac{1}{3}\end{matrix}\right.\)
+ Khi \(xyz=\dfrac{9}{10}\)
\(\Rightarrow\left\{{}\begin{matrix}z=\dfrac{9}{10}:\dfrac{1}{2}=\dfrac{9}{5}\\x=\dfrac{9}{10}:\dfrac{3}{5}=\dfrac{3}{2}\\y=\dfrac{9}{10}:\dfrac{27}{10}=\dfrac{1}{3}\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(\dfrac{3}{2};\dfrac{1}{3};\dfrac{9}{5}\right);\left(-\dfrac{3}{2};-\dfrac{1}{3};-\dfrac{9}{5}\right)\)
\(\left(x.y\right).\left(y.z\right)\left(z.x\right)=\dfrac{1}{2}.\dfrac{3}{5}.\dfrac{27}{10}\\ \Rightarrow\left(x.y.z\right)^2=\dfrac{81}{100}\\ \Rightarrow\left[{}\begin{matrix}x.y.z=\dfrac{9}{10}\\x.y.z=-\dfrac{9}{10}\end{matrix}\right.\)
Nếu x.y.z=9/10
\(\Rightarrow z=\dfrac{9}{10}:\dfrac{1}{2}=\dfrac{9}{5};x=\dfrac{9}{10}:\dfrac{3}{5}=\dfrac{3}{2};y=\dfrac{9}{10}:\dfrac{27}{10}=\dfrac{1}{3}\)
Nếu x.y.z=-9/10
\(\Rightarrow z=-\dfrac{9}{5};x=-\dfrac{3}{2};y=-\dfrac{1}{3}\)
a) Áp dụng tính chất dãy tỉ số bằng nhau ta được:
X/3 = y/4 = x/3 + y/4 = 28/7 = 4
=> x = 4 × 3 = 12
=> y = 4 × 4 = 16
Vậy x = 12, y = 16
B) Áp dụng tính chất dãy tỉ số bằng nhau ta được:
X/2 = y/(-5) = x/2 - y/(-5) = (-7)/7 = -1
=> x = -1 × 2 = -2
=> y = -1 × -5 = 5
Vậy x = -2, y = 5
C) làm tương tự như bài a, b
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
x8=y12=z15=x+y−z8+12−15=105=2x8=y12=z15=x+y−z8+12−15=105=2
Do đó: x=16; y=24; z=30
y+2,9 mũ mấy vậy bn
Cho mình thử sức câu b) xem sao.