K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2018

a) \(\dfrac{x}{5}=\dfrac{y}{6};\dfrac{y}{8}=\dfrac{z}{7}\)\(x+y-z=69\)

Theo đề bài, ta có:

\(\dfrac{x}{5}=\dfrac{y}{6}\Rightarrow\dfrac{x}{5}\times\dfrac{1}{8}=\dfrac{y}{6}\times\dfrac{1}{8}\Rightarrow\dfrac{x}{40}=\dfrac{y}{48}\)(1)

\(\dfrac{y}{8}=\dfrac{z}{7}\Rightarrow\dfrac{y}{8}\times\dfrac{1}{6}=\dfrac{z}{7}\times\dfrac{1}{6}\Rightarrow\dfrac{y}{48}=\dfrac{z}{42}\)(2)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\Rightarrow\dfrac{x}{40}=\dfrac{y}{48}=\dfrac{z}{42}=\dfrac{x+y-z}{40+48-42}=\dfrac{69}{46}=\dfrac{3}{2}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{40}=\dfrac{3}{2}\Rightarrow x=\dfrac{40\times3}{2}=60\\\dfrac{y}{48}=\dfrac{3}{2}\Rightarrow y=\dfrac{48\times3}{2}=72\\\dfrac{z}{42}=\dfrac{3}{2}\Rightarrow z=\dfrac{42\times3}{2}=63\end{matrix}\right.\)

Vậy \(\Rightarrow\left\{{}\begin{matrix}x=60\\y=72\\z=63\end{matrix}\right.\)

31 tháng 10 2018

Ta có:\(\dfrac{x}{5}=\dfrac{y}{6}\Rightarrow\dfrac{x}{20}=\dfrac{y}{24}\)(Nhân 2 vế với \(\dfrac{1}{4}\))

\(\dfrac{y}{8}=\dfrac{x}{7}\Rightarrow\dfrac{y}{24}=\dfrac{z}{21}\)(Nhân 2 vế với \(\dfrac{1}{3}\))

\(\Rightarrow\dfrac{x}{20}=\dfrac{y}{24}=\dfrac{z}{21}\)và x+y-z=6

Áp dụng tính chất dãy tỉ số bằng nhau. Ta có:

\(\dfrac{x}{20}=\dfrac{y}{24}=\dfrac{z}{21}=\dfrac{x+y-z}{20+24-21}=\dfrac{69}{23}=3\)

\(\dfrac{x}{20}=3\Rightarrow x=20.3=60\)

\(\dfrac{y}{24}=3\Rightarrow y=24.3=72\)

\(\dfrac{z}{21}=3\Rightarrow z=3.21=63\)

Vậy x=60; y=72; z=63

23 tháng 11 2017

Bài 4 câu c) và x-y+y hay x-y+z vậy bạn

24 tháng 11 2017

1 a) \(\dfrac{\left(-2\right)}{5}\)= \(\dfrac{-6}{15}\); \(\dfrac{15}{-6}\)= \(\dfrac{5}{-2}\); \(\dfrac{-6}{-2}\)= \(\dfrac{15}{5}\); \(\dfrac{-2}{-6}\)= \(\dfrac{5}{15}\)

21 tháng 12 2017

1,a/ Theo t,c dãy tỉ số bằng nhau ta có :

\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{-14}{7}=2\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=-2\\\dfrac{y}{5}=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=-10\end{matrix}\right.\)

Vậy ...

b, Theo t,c dãy tỉ số bằng nhau ta có :

\(\dfrac{x}{7}=\dfrac{y}{5}=\dfrac{x-y}{7-5}=\dfrac{8}{2}=4\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{7}=4\\\dfrac{y}{5}=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=28\\y=20\end{matrix}\right.\)

Vậy ...

2/a, Theo t,c dãy tỉ số bằng nhau ta có :

\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{x+y+z}{2+5+7}=\dfrac{56}{14}=4\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=4\\\dfrac{y}{5}=4\\\dfrac{z}{7}=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=10\\z=28\end{matrix}\right.\)

Vậy ...

b/ \(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{8}\)

\(\Leftrightarrow\dfrac{2x}{6}=\dfrac{y}{5}=\dfrac{z}{8}\)

Theo t,c dãy tỉ số bằng nhau ta có :

\(\dfrac{2x}{6}=\dfrac{y}{5}=\dfrac{z}{8}=\dfrac{2x+y-z}{6+5-8}=\dfrac{12}{3}=4\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2x}{6}=4\\\dfrac{y}{5}=4\\\dfrac{z}{8}=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=24\\y=20\\z=32\end{matrix}\right.\)

Vậy ..

21 tháng 12 2017

Bài Giải:

Bài 1:

a) Theo đề bài, ta có:

\(\dfrac{x}{2}=\dfrac{y}{5}\)và x+y=-4

Áp dụng tính chất của dãy tỉ số bằng nhau

Ta có: \(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{-14}{7}=-2\)

Suy ra: x = 2 . (-2) =-4

y = 5 . (-2) =-10

Vậy: x = -4 và y = -10

Mấy câu sau cậu cứ dựa vào bài trên để giải nhé!

Tick cho Phong nhé:>

Yêu nhiều>3

#Phong_419

3 tháng 2 2019

\(a,A=\dfrac{\dfrac{3}{4}-\dfrac{3}{11}+\dfrac{3}{13}}{\dfrac{5}{7}-\dfrac{5}{11}+\dfrac{5}{13}}+\dfrac{\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{4}}{\dfrac{5}{4}-\dfrac{5}{6}+\dfrac{5}{8}}\\ A=\dfrac{\dfrac{405}{572}}{\dfrac{645}{1001}}+\dfrac{\dfrac{5}{12}}{\dfrac{25}{24}}\\ A=\dfrac{189}{172}+\dfrac{2}{5}\\ A=\dfrac{1289}{860}\)

10 tháng 8 2018

\(xy-3x-y=6\)

\(=>xy+3x-y-3=6-3\)

\(=>x\left(y+3\right)-\left(y+3\right)=3\)

\(=>\left(y+3\right)\left(x-1\right)=3\)

y+3 -1 3 1 -3
x-1 -3 1 3 -1

y+3 -1 3 -3 1
y -4 -1 -7 -3

x-1 -3 1 3 -1
x -2 2 4 0

30 tháng 11 2017

a, Ta có:

\(x-24=y\\ x-y=24\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{7}=\dfrac{y}{3}=\dfrac{x-y}{7-3}=\dfrac{24}{4}=6\)

+) \(\dfrac{x}{7}=6\Rightarrow x=6\cdot7=42\)

+) \(\dfrac{y}{3}=6\Rightarrow6\cdot3=18\)

Vậy \(x=42;y=18\)

b, Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{2}=\dfrac{y-z}{7-2}=\dfrac{48}{5}=9,6\)

+) \(\dfrac{x}{5}=9,6\Rightarrow x=9,6\cdot5=48\)

+) \(\dfrac{y}{7}=9,6\Rightarrow y=9,6\cdot7=67,2\)

+) \(\dfrac{z}{2}=9,6\Rightarrow z=9,6\cdot2=19,2\)

Vậy \(x=48;y=67,2;z=19,2\)

30 tháng 11 2017

mk giải đc bao nhiêu thì bn làm bấy nhiêu nha

18 tháng 10 2017

a) \(\dfrac{x}{y}=\dfrac{9}{7}\Rightarrow\dfrac{x}{9}=\dfrac{y}{7}\) (1)

\(\dfrac{y}{z}=\dfrac{7}{3}\Rightarrow\dfrac{z}{3}=\dfrac{y}{7}\) (2)

Từ (1) và (2) suy ra: \(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x-y-z}{9-7-3}=\dfrac{-15}{-1}=15\)

\(\Rightarrow\left\{{}\begin{matrix}x=15.9\\y=15.7\\z=15.3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=135\\y=105\\z=45\end{matrix}\right.\)

Vậy, x = 135, y = 105, z = 45

18 tháng 10 2017

b, \(\dfrac{x}{-3}=\dfrac{y}{-8}\Leftrightarrow\dfrac{x^2}{9}=\dfrac{y^2}{64}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x^2}{9}=\dfrac{y^2}{64}=\dfrac{x^2-y^2}{9-64}=-\dfrac{44}{\dfrac{5}{-55}}=-\dfrac{44}{5}:\left(-55\right)=-\dfrac{44}{5}.-\dfrac{1}{55}=\dfrac{44}{275}=0,16\)

+) \(\dfrac{x^2}{9}=0,16\Rightarrow x^2=1,44\Rightarrow x=\pm1,2\)

+) \(\dfrac{y^2}{64}=0,16\Rightarrow y^2=10,24\Rightarrow y=\pm3,2\)

Vậy ...

5 tháng 8 2017

a) Ta có: \(\dfrac{x}{y}=\dfrac{7}{20}\Rightarrow\dfrac{x}{7}=\dfrac{y}{20}\)

\(\dfrac{y}{z}=\dfrac{5}{8}\Rightarrow\dfrac{y}{5}=\dfrac{z}{8}\Rightarrow\dfrac{y}{20}=\dfrac{z}{32}\)

\(\Rightarrow\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}\)

\(\Rightarrow\dfrac{2x}{14}=\dfrac{5y}{100}=\dfrac{2z}{64}\)

Áp dụng tc dãy tỉ số bằng nhau:

\(\dfrac{2x}{14}=\dfrac{5y}{100}=\dfrac{2z}{64}=\dfrac{2x+5y-2z}{14+100-64}=2\)

Do \(\left\{{}\begin{matrix}\dfrac{2x}{14}=2\\\dfrac{5y}{100}=2\\\dfrac{2z}{64}=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=14\\y=40\\z=64\end{matrix}\right.\).

b) \(5x=8y=20z\Rightarrow\dfrac{5x}{40}=\dfrac{8y}{40}=\dfrac{20z}{40}\)

\(\Rightarrow\dfrac{x}{8}=\dfrac{y}{5}=\dfrac{z}{2}\)

Áp dụng...

\(\dfrac{x}{8}=\dfrac{y}{5}=\dfrac{z}{2}=\dfrac{x-y-z}{8-5-2}=3\)

....

c) \(\dfrac{6}{11}x=\dfrac{9}{2}y=\dfrac{18}{5}z\Rightarrow\dfrac{x}{\dfrac{11}{6}}=\dfrac{y}{\dfrac{2}{9}}=\dfrac{z}{\dfrac{5}{18}}\)

...