K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2021

\(\left(x+1\right)^{2020}\ge0\forall x\\ \Rightarrow-\left(x+1\right)^{2020}\le0\forall x\\ \Rightarrow2019-\left(x+1\right)^{2020}\le2019\forall x\\ \Rightarrow P\le2019\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x+1\right)^{2020}=0\\ \Leftrightarrow x+1=0\\ \Leftrightarrow x=-1\)

Vậy GTLN của P = 2019

1 tháng 5 2021

vì -(x+1)^2<0 => -(x+1)^2. (x+1)^2018<0 với mọi x => 2019-(x+1)^2020<2019

dấu "=" xảy ra khi x+1=0 <=> x= -1

vậy Pmax= 2019 khi x= -1

14 tháng 5 2020

Bạn hỏi câu này bên Hoidap247 đúng không nè? :)

a) Ta có : \(\left(x+1\right)^{2020}\ge0\forall x\inℤ\)

\(\Rightarrow2019-\left(x+1\right)^{2020}\le2019\)

Dấu "=" xảy ra khi \(\left(x+1\right)^{2020}=0\)

\(\Rightarrow x+1=0\)

\(\Rightarrow x=-1\)

Vậy GTLN của P = 2019 tại \(x=-1\).

b) Ta có : \(\left|2019-x\right|\ge0\forall x\inℤ\)

\(\Rightarrow2020-\left|2019-x\right|\le2020\)

Dấu "=" xảy ra khi \(\left|2019-x\right|=0\)

\(\Rightarrow2019-x=0\)

\(\Rightarrow x=2019\)

Vậy GTLN của Q = 2020 tại \(x=2019\).

14 tháng 5 2020

a) \(P=2019-\left(x+1\right)^{2020}\)

Ta có \(\left(x+1\right)^{2020}\ge0\forall x\)

\(\Rightarrow2019-\left(x+1\right)^{2020}\ge2019\)

Dáu "=" xảy ra <=> \(\left(x+1\right)^{2020}=0\)

<=> x+1=0

<=> x=-1

Vậy MaxA=2019 đạt được khi x=-1

b) \(Q=2020-\left|2019-x\right|\)

Ta có \(\left|2019-x\right|\ge0\forall x\)

\(\Rightarrow2020-\left|2019-x\right|\ge2020\)

Dấu "=" xảy ra <=> |2019-x|=0

<=> 2019-x=0

<=> x=2019

Vậy MaxQ=2020 đạt được khi x=2019

9 tháng 4 2020

a

Ta có:\(2020\equiv1\left(mod3\right)\Rightarrow2020^{2019}\equiv1\left(mod3\right)\Rightarrow2020^{2019}-1\equiv0\left(mod3\right)\)

Khi đó:\(\left(2020^{2019}+1\right)\cdot\left(2020^{2019}-1\right)\equiv0\left(mod3\right)\)

suy ra đpcm

b

\(n^5+96n=n\left(n^4+96\right)\)

Để \(n^5+96n\) là số nguyên tố thì:\(n^4+96=1\left(h\right)n=1\)

Do \(n^4+96>1\Rightarrow n=1\)

Thay vào ta thấy thỏa mãn

Vậy n=1

10 tháng 4 2020

a, =2020^4038 -1

Vì  \(2020 \equiv 1 \pmod{3}\)

->\(2020^(4038) \equiv 1 \pmod{3}\)

->2020^4038 -1 chia hết cho 3 -> dpcm

23 tháng 8 2019

Để P đạt GTLN 

=> x - 2020 nhỏ nhất và x - 2020 > 0 ;  x - 2020 \(\ne\)0

=> x - 2020 = 1

=> x = 2021

=> GTLN Của P = \(\frac{2019}{2021-2020}=\frac{2019}{1}=2019\)

Vậy GTLN của P là 2019 khi x = 2021

12 tháng 3 2021

x=2021 để P có giá trị lớn nhất . Giá trị lớn nhất là 2019

18 tháng 5 2021

a)\(M=\frac{2019\times2020-2}{2018+2018\times2020}=\frac{2019\times2020-2}{2018+2018\times2020+2020-2020}=\frac{2019\times2020-2}{\left(2018+1\right)\times2020+2018-2020}=\frac{2019\times2020-2}{2019\times2020-2}=1\\ N=\frac{-2019\times20202020}{20192019\times2020}=\frac{-2019\times10001\times2020}{2019\times10001\times2020}=-1\)

b)\(5\left|x-1\right|=3M-2N=5\\ \left|x-1\right|=1\Rightarrow\hept{\begin{cases}x-1=1\Rightarrow x=2\\x-1=-1\Rightarrow x=0\end{cases}}\)

Ta có: \(\dfrac{x+1}{2018}+\dfrac{x+1}{2019}+\dfrac{x+1}{2020}+\dfrac{x+1}{2021}=0\)

\(\Leftrightarrow x+1=0\)

hay x=-1