Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn hỏi câu này bên Hoidap247 đúng không nè? :)
a) Ta có : \(\left(x+1\right)^{2020}\ge0\forall x\inℤ\)
\(\Rightarrow2019-\left(x+1\right)^{2020}\le2019\)
Dấu "=" xảy ra khi \(\left(x+1\right)^{2020}=0\)
\(\Rightarrow x+1=0\)
\(\Rightarrow x=-1\)
Vậy GTLN của P = 2019 tại \(x=-1\).
b) Ta có : \(\left|2019-x\right|\ge0\forall x\inℤ\)
\(\Rightarrow2020-\left|2019-x\right|\le2020\)
Dấu "=" xảy ra khi \(\left|2019-x\right|=0\)
\(\Rightarrow2019-x=0\)
\(\Rightarrow x=2019\)
Vậy GTLN của Q = 2020 tại \(x=2019\).
a) \(P=2019-\left(x+1\right)^{2020}\)
Ta có \(\left(x+1\right)^{2020}\ge0\forall x\)
\(\Rightarrow2019-\left(x+1\right)^{2020}\ge2019\)
Dáu "=" xảy ra <=> \(\left(x+1\right)^{2020}=0\)
<=> x+1=0
<=> x=-1
Vậy MaxA=2019 đạt được khi x=-1
b) \(Q=2020-\left|2019-x\right|\)
Ta có \(\left|2019-x\right|\ge0\forall x\)
\(\Rightarrow2020-\left|2019-x\right|\ge2020\)
Dấu "=" xảy ra <=> |2019-x|=0
<=> 2019-x=0
<=> x=2019
Vậy MaxQ=2020 đạt được khi x=2019
a
Ta có:\(2020\equiv1\left(mod3\right)\Rightarrow2020^{2019}\equiv1\left(mod3\right)\Rightarrow2020^{2019}-1\equiv0\left(mod3\right)\)
Khi đó:\(\left(2020^{2019}+1\right)\cdot\left(2020^{2019}-1\right)\equiv0\left(mod3\right)\)
suy ra đpcm
b
\(n^5+96n=n\left(n^4+96\right)\)
Để \(n^5+96n\) là số nguyên tố thì:\(n^4+96=1\left(h\right)n=1\)
Do \(n^4+96>1\Rightarrow n=1\)
Thay vào ta thấy thỏa mãn
Vậy n=1
a, =2020^4038 -1
Vì \(2020 \equiv 1 \pmod{3}\)
->\(2020^(4038) \equiv 1 \pmod{3}\)
->2020^4038 -1 chia hết cho 3 -> dpcm
Để P đạt GTLN
=> x - 2020 nhỏ nhất và x - 2020 > 0 ; x - 2020 \(\ne\)0
=> x - 2020 = 1
=> x = 2021
=> GTLN Của P = \(\frac{2019}{2021-2020}=\frac{2019}{1}=2019\)
Vậy GTLN của P là 2019 khi x = 2021
a)\(M=\frac{2019\times2020-2}{2018+2018\times2020}=\frac{2019\times2020-2}{2018+2018\times2020+2020-2020}=\frac{2019\times2020-2}{\left(2018+1\right)\times2020+2018-2020}=\frac{2019\times2020-2}{2019\times2020-2}=1\\ N=\frac{-2019\times20202020}{20192019\times2020}=\frac{-2019\times10001\times2020}{2019\times10001\times2020}=-1\)
b)\(5\left|x-1\right|=3M-2N=5\\ \left|x-1\right|=1\Rightarrow\hept{\begin{cases}x-1=1\Rightarrow x=2\\x-1=-1\Rightarrow x=0\end{cases}}\)
Ta có: \(\dfrac{x+1}{2018}+\dfrac{x+1}{2019}+\dfrac{x+1}{2020}+\dfrac{x+1}{2021}=0\)
\(\Leftrightarrow x+1=0\)
hay x=-1
\(\left(x+1\right)^{2020}\ge0\forall x\\ \Rightarrow-\left(x+1\right)^{2020}\le0\forall x\\ \Rightarrow2019-\left(x+1\right)^{2020}\le2019\forall x\\ \Rightarrow P\le2019\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x+1\right)^{2020}=0\\ \Leftrightarrow x+1=0\\ \Leftrightarrow x=-1\)
Vậy GTLN của P = 2019
vì -(x+1)^2<0 => -(x+1)^2. (x+1)^2018<0 với mọi x => 2019-(x+1)^2020<2019
dấu "=" xảy ra khi x+1=0 <=> x= -1
vậy Pmax= 2019 khi x= -1