K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2023

\(\dfrac{x-4}{2022}+\dfrac{x-3}{2021}+\dfrac{x-2}{2020}+\dfrac{x-1}{2019}\text{=}-4\)

\(\dfrac{x-4}{2022}+\dfrac{x-3}{2021}+\dfrac{x-2}{2020}+\dfrac{x-1}{2019}+4\text{=}0\)

\(\left(\dfrac{x-4}{2022}+1\right)+\left(\dfrac{x-3}{2021}+1\right)+\left(\dfrac{x-2}{2020}+1\right)+\left(\dfrac{x-1}{2019}+1\right)\text{=}0\)

\(\dfrac{x-2018}{2022}+\dfrac{x-2018}{2021}+\dfrac{x-2018}{2020}+\dfrac{x-2018}{2019}\text{=}0\)

\(\left(x-2018\right)\left(\dfrac{1}{2022}+\dfrac{1}{2021}+\dfrac{1}{2020}+\dfrac{1}{2019}\right)\text{=}0\)

\(Do:\) \(\dfrac{1}{2022}+\dfrac{1}{2021}+\dfrac{1}{2020}+\dfrac{1}{2019}\ne0\)

\(x-2018\text{=}0\)

\(x\text{=}2018\)

\(Vậy...\)

19 tháng 5 2021

1. \(\dfrac{2019}{2020}-\left(\dfrac{2019}{2020}-\dfrac{2020}{2021}\right)\)

\(=\dfrac{2019}{2020}-\dfrac{2019}{2020}+\dfrac{2020}{2021}\)

\(=0+\dfrac{2020}{2021}=\dfrac{2020}{2021}\)

Giải:

1) \(\dfrac{2019}{2020}-\left(\dfrac{2019}{2020}-\dfrac{2020}{2021}\right)\)  

\(=\dfrac{2019}{2020}-\dfrac{2019}{2020}+\dfrac{2020}{2021}\) 

\(=\left(\dfrac{2019}{2020}-\dfrac{2019}{2020}\right)+\dfrac{2020}{2021}\) 

\(=0+\dfrac{2020}{2021}\) 

\(=\dfrac{2020}{2021}\) 

2) \(\dfrac{2}{9}+\dfrac{7}{9}:\left(\dfrac{42}{5}-\dfrac{7}{5}\right)\) 

\(=\dfrac{2}{9}+\dfrac{7}{9}:7\) 

\(=\dfrac{2}{9}+\dfrac{1}{9}\) 

\(=\dfrac{1}{3}\) 

3) \(\dfrac{3}{4}+\dfrac{x}{4}=\dfrac{5}{8}\) 

            \(\dfrac{x}{4}=\dfrac{5}{8}-\dfrac{3}{4}\) 

            \(\dfrac{x}{4}=\dfrac{-1}{8}\)  

\(\Rightarrow x=\dfrac{4.-1}{8}=\dfrac{-1}{2}\) 

4) \(\left|3x+1\right|-\dfrac{1}{4}=\dfrac{-1}{4}\) 

            \(\left|3x-1\right|=\dfrac{-1}{4}+\dfrac{1}{4}\) 

            \(\left|3x-1\right|=0\) 

             \(3x-1=0\) 

                    \(3x=0+1\) 

                    \(3x=1\) 

                      \(x=1:3\) 

                      \(x=\dfrac{1}{3}\) 

Chúc bạn học tốt!

4 tháng 8 2017

a, \(\dfrac{2017.2021-4031}{2020+2017.2018}\)

= \(\dfrac{2017\left(2018+3\right)-4031}{2020+2017.2018}\)

= \(\dfrac{2017.2018+2017.3-4031}{2020+2017.2018}\)

= \(\dfrac{2017.2018+2020}{2020+2017.2018}\)

= 1
@Nguyen Thi Ngoc Linh

22 tháng 12 2022

D

22 tháng 12 2022

D nha

30 tháng 7 2020

Ta có : A = \(\frac{10^{2020}+1}{10^{2021}+1}\)

=> 10A = \(\frac{10^{2021}+10}{10^{2021}+1}=1+\frac{9}{10^{2021}+1}\)

Lại có : \(B=\frac{10^{2021}+1}{10^{2022}+1}\)

=> \(10B=\frac{10^{2022}+10}{10^{2022}+1}=1+\frac{9}{10^{2022}+1}\)

Vì \(\frac{9}{10^{2022}+1}< \frac{9}{10^{2021}+1}\)

=> \(1+\frac{9}{10^{2022}+1}< 1+\frac{9}{10^{2022}+1}\)

=> 10B < 10A

=> B < A

b) Ta có : \(\frac{2019}{2020+2021}< \frac{2019}{2020}\)

Lại có : \(\frac{2020}{2020+2021}< \frac{2020}{2021}\)

=> \(\frac{2019}{2020+2021}+\frac{2020}{2020+2021}< \frac{2019}{2020}+\frac{2020}{2021}\)

=> \(\frac{2019+2020}{2020+2021}< \frac{2019}{2020}+\frac{2020}{2021}\)

=> B < A

13 tháng 2 2022

sai rồi

B/A

\(=\dfrac{1+\dfrac{2020}{2}+1+\dfrac{2019}{3}+...+1+\dfrac{1}{2021}+1}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}+\dfrac{1}{2022}}\)

\(=\dfrac{2022\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}+\dfrac{1}{2022}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}+\dfrac{1}{2022}}=2022\)