Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BĐT cần chứng minh tương đương với :
\(\left(a^2b+b^2c+c^2a\right)\left(2+\frac{1}{a^2b^2c^2}\right)\ge9\)
\(\Leftrightarrow2\left(a^2b+b^2c+c^2a\right)+\frac{1}{ab^2}+\frac{1}{bc^2}+\frac{1}{ca^2}\ge9\)
Ta có : \(a^2b+a^2b+\frac{1}{ab^2}\ge3\sqrt[3]{a^2b.a^2b.\frac{1}{ab^2}}=3a\)
Tương tự : \(b^2c+b^2c+\frac{1}{bc^2}\ge3b;c^2a+c^2a+\frac{1}{ca^2}\ge3c\)
Cộng lại theo vế, ta được :
\(2\left(a^2b+b^2c+c^2a\right)+\frac{1}{ab^2}+\frac{1}{bc^2}+\frac{1}{ca^2}\ge9\)
Dấu "=" xảy ra khi a = b = c = 1
Đặt \(\frac{y+z+1}{2x}=\frac{x+z+2}{2y}=\frac{x+y-3}{2z}=\frac{1}{x+y+z}=k\)
Áp dụng TS DTSBN ta có :
\(k=\frac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{2x+2y+2z}=\frac{2\left(x+y+z\right)}{2\left(x+y+z\right)}=1\)
\(\Rightarrow\hept{\begin{cases}y+z+1=2x\\x+z+2=2y\\x+y-3=2z\end{cases}}\) và \(x+y+z=1\)
\(\Leftrightarrow\hept{\begin{cases}x+y+z+1=3x\\x+y+z+2=3y\\x+y+z-3=3z\end{cases}}\) và \(x+y+z=1\)
\(\Leftrightarrow\hept{\begin{cases}1+1=3x\\1+2=3y\\1-3=3z\end{cases}\Leftrightarrow\hept{\begin{cases}2=3x\\3=3y\\-2=3z\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{2}{3}\\y=1\\z=-\frac{2}{3}\end{cases}}}\)
Vậy \(x=\frac{2}{3};y=1;z=-\frac{2}{3}\)