K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2017

\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}\Rightarrow\frac{xyz}{z\left(x+y\right)}=\frac{xyz}{x\left(y+z\right)}=\frac{xyz}{y\left(z+x\right)}\)

 \(\frac{xyz}{z\left(x+y\right)}=\frac{xyz}{x\left(y+z\right)}\Rightarrow z\left(x+y\right)=x\left(y+z\right)\Rightarrow xz+yz=xy+xz\Rightarrow yz=xy\Rightarrow z=x\)

CM tương tự ta cũng có : \(x=y;y=z\)

\(\Rightarrow x=y=z\) Thay vào B ta được :

\(B=\frac{x^3+y^3+z^3}{x^2y+y^2z+z^2x}=\frac{x^3+x^3+x^3}{x^2x+x^2x+x^2x}=\frac{3x^3}{3x^3}=1\)

13 tháng 2 2020

\(\frac{2x+2y-z}{z}=\frac{2x-y+2z}{y}=\frac{-x+2y+2z}{x} \)

=>\(\frac{2x+2y-z}{z}+3=\frac{2x-y+2z}{y}+3=\frac{-x+2y+2z}{x}+3\)

=>\(\frac{2x+2y+2z}{z}=\frac{2x+2y+2z}{y}=\frac{2x+2y+2z}{x}\)

=>\(\frac{x+y+z}{z}=\frac{x+y+z}{y}=\frac{x+y+z}{x}\)

=>\(\orbr{\begin{cases}x+y+z=0\\x=y=z\end{cases}}\)

Với \(x+y+z=0\Rightarrow\hept{\begin{cases}x+y=-z\\y+z=-x\\x+z=-y\end{cases}}\)

\(\Rightarrow M=\frac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{8xyz}=\frac{-xyz}{8xyz}=-\frac{1}{8}\)

Với \(x=y=z\)\(\Rightarrow M=\frac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{8xyz}=\frac{2x.2y.2z}{8xyz}=\frac{8xyz}{8xyz}=1\)

26 tháng 2 2017

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{y-2x+4z}{2x}=\frac{z-2y+4x}{2y}=\frac{x-2z+4y}{2z}=\)\(=\frac{\left(y-2x+4z\right)+\left(z-2y+4x\right)+\left(x-2z+4y\right)}{2x+2y+2z}=\frac{3\left(x+y+z\right)}{2\left(x+y+z\right)}=\frac{3}{2}\)

\(\Rightarrow\left\{\begin{matrix}2\left(y-2x+4z\right)=6x\\2\left(z-2y+4x\right)=6y\\2\left(x-2z+4y\right)=6z\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}y-2x+4z=3x\\z-2y+4x=3y\\x-2z+4y=3z\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}y+4z=5x\\z+4x=5y\\x+4y=5z\end{matrix}\right.\)

\(P=\left(2+\frac{x}{2y}\right)\left(2+\frac{y}{2z}\right)\left(2+\frac{z}{2x}\right)\)

\(P=\frac{4y+x}{2y}.\frac{4z+y}{2z}.\frac{4x+z}{2x}=\frac{5z}{2y}.\frac{5x}{2z}.\frac{5y}{2x}=\frac{125}{8}\)

9 tháng 3 2019

a,  \(\frac{xy}{2y+4x}=\frac{yz}{4z+6y}=\frac{zx}{6x+2z}=\frac{x^2+y^2+z^2}{2^2+4^2+6^2}\)          (2)

Xét \(x=0\Rightarrow y=z=0\Rightarrow2y+4z=0\)  (vô lí)

\(\Rightarrow x\ne0;y\ne0;z\ne0\)

Khi đó từ (2) \(\Rightarrow\frac{2y+4x}{xy}=\frac{4z+6y}{yz}=\frac{6x+2z}{zx}=\frac{2^2+4^2+6^2}{x^2+y^2+z^2}\)

\(\Rightarrow\frac{2}{x}+\frac{4}{y}=\frac{4}{y}+\frac{6}{z}=\frac{6}{z}+\frac{2}{x}=\frac{2^2+4^2+6^2}{x^2+y^2+z^2}\)

\(\Rightarrow\frac{2}{x}=\frac{4}{y}=\frac{6}{z}\) và \(\frac{2^2+4^2+6^2}{x^2+y^2+z^2}=2.\frac{2}{x}\)

Đặt \(\frac{2}{x}=\frac{4}{y}=\frac{6}{z}=\frac{1}{k}\left(k\ne0\right)\)thì \(\frac{2^2+4^2+6^2}{x^2+y^2+z^2}=\frac{2}{k}\)

\(\Rightarrow x=2k;y=4k;z=6k\)và \(x^2+y^2+z^2=28k\)   (3)

\(thay\)  \(x=2k;y=4k;z=6k\)vào (3)  ta được :

\(\left(2k\right)^2+\left(4k\right)^2+\left(6k\right)^2=28k\)

\(56k^2-28k=0\)

\(56k.\left(2k-1\right)=0\)

\(\Rightarrow k=0\)(loại)

Hoặc \(k=\frac{1}{2}\)( thỏa mãn)

Với \(k=\frac{1}{2}\)thì tìm được \(x=1;y=2;z=3\)

Vậy \(x=1;y=2;z=3\)

Ta có :

\(|x-y|+|y-z|+|z-x|=2019\)

\(\Rightarrow|x-y|+\left(x-y\right)+|y-z|+\left(y-z\right)+|z-x|+\left(z-x\right)=2019\)

Nhận xét :

\(|a|+a=0\)với \(a\le0\)

\(|a|+a=2a\)với \(a\ge0\)

\(\Rightarrow|a|+a\)luôn chẵn với \(\forall a\)

\(\Rightarrow|x-y|+\left(x-y\right)+|y-z|+\left(y-z\right)+|z-x|+\left(z-x\right)\)luôn chẵn với \(\forall x,y,z\)

mà \(2019\)lẻ

\(\Rightarrow\left(đpcm\right)\)

28 tháng 2 2019

dùng tính chất của dãy tỉ số bằng nhau