K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2020

a)

pt <=>   \(\left(2x^2-8xy+8y^2\right)+\left(7x^2-28x+28\right)=0\)

<=>   \(2\left(x-2y\right)^2+7\left(x-2\right)^2=0\)

TA luôn có:   \(2\left(x-2y^2\right)+7\left(x-2\right)^2\ge0\forall x;y\) 

=> DẤU "=" XẢY RA <=>   \(\hept{\begin{cases}2\left(x-2y\right)^2=0\\7\left(x-2\right)^2=0\end{cases}}\)

<=>   \(\hept{\begin{cases}y=1\\x=2\end{cases}}\)

9 tháng 9 2020

b)

pt <=>   \(x^2+2y^2+5z^2-2xy-4yz-2z+1=0\)

<=>   \(\left(x^2-2xy+y^2\right)+\left(y^2-4yz+4z^2\right)+\left(z^2-2z+1\right)=0\)

<=>   \(\left(x-y\right)^2+\left(y-2z\right)^2+\left(z-1\right)^2=0\)

LẬP LUẬN TƯƠNG TỰ NHƯ CÂU a ta cũng được:

DẤU "=" XẢY RA <=>   \(\left(x-y\right)^2=\left(y-2z\right)^2=\left(z-1\right)^2=0\)

=>   \(x=y=2;z=1\)

22 tháng 10 2017

bài 1

a) 299992=(20000+9999)2=4.100002+40000.9999+99992

19999.39999+(10000+9999).(30000+9999)=3.100002+99992+40000.9999

ta có 4.100002>3.100002=>299992>19999.39999

b) chịu mình ko giỏi so sánh

bài 2

a) x2+8y2+9y=4y(x+3)

<=>x2-4xy+42+4y2+122+9=0

<=>(x-2y)2+(2y+3)2=0

xét (x-27)2\(\ge\)0 với mọi giá trị x,y

(2y+3)2\(\ge\)0 với mọi giá trị y

=>đồng thời xảy ra x-2y=0;2y-3=0

từ đó tìm ra y sau đó thay vào x-2y tìm nốt x

b)x2+2y2+5z2+1=2(xy+2yz+z)

<=>x2-2xy+y2+y2-4yz+4z2+z2-2z+1=0

<=>(x-y)2+(y-2z)2+(z-1)2=0

sau đó xm tyơng tự câu trên

c) câu này mình chịu

chào, hiện tại tôi đang ở tương lai năm 2024, 2017 và 2018 vui lắm, cố lên nhé!

 

b: 5x^2+5y^2+8xy-2x+2y+2=0

=>4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0

=>(x-1)^2+(y+1)^2+(2x+2y)^2=0

=>x=1 và y=-1

M=(1-1)^2015+(1-2)^2016+(-1+1)^2017=1

2 tháng 8 2021

Ta có:

D=2x2+3y2+4xy−8x−2y+18C=2x2+3y2+4xy−8x−2y+18

D=2(x2+2xy+y2)+y2−8x−2y+18C=2(x2+2xy+y2)+y2−8x−2y+18

D=2[(x+y)2−4(x+y)+4]+(y2+6y+9)+1C=2[(x+y)2−4(x+y)+4]+(y2+6y+9)+1

D=2(x+y−2)2+(y+3)2+1≥1C=2(x+y−2)2+(y+3)2+1≥1

Dấu "=" xảy ra ⇔x+y=2⇔x+y=2và y=−3y=−3

Hay x = 5 , y = -3

Đc chx bạn

2 tháng 8 2021

2.

A = xy + 2yz + 3xz = xy + xz + 2yz + 2xz = x(y + z) + 2z(y + z)

Áp dụng BĐT: (a+b)^2/4 ≥ ab dấu = khi a = b
Ta có:
(x + y + z)^2/4 ≥ x(y + z)
(x+ y +z)^2/4 ≥ z(y + z)
=> A ≤ 3(x + y + z)^2/4 = 3.36/4 = 27
=> A max = 27 xảy ra khi:
{x = y + z
{z = y + z
<=> y = 0 và x = z = 3