Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
minh lam cau b) roi dc co 2/3 thoy ban tham khao nhe phan () la minh giai thich nha dung viet vo bai !!
2x=3y ; 5y = 7z
+) 10x=15y=21z ( Quy dong)
+)10x/210 = 15y/210 = 21z/210 ( BC)
+) x/21 = y/14 = z/10 ( Rut gon)
+) 3x/63 = 7y/98 = 5z/50 = 3x-7y+ 5z / 63 - 98 - 50 = -30/14 = -2
+ x/21 = 2 => ............ phan nay minh chua xong neu xong thi minh pm not cho
Mình làm một câu để bạn tham khảo, sau đó bạn áp dụng làm các bài còn lại nha ^^
Có gì không hiểu bạn ib nha ^^
1. \(2x=3y-2x\left(1\right)\) và \(x+y=14\)
\(\left(1\right)\Leftrightarrow4x=3y\)
\(\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{4}\)
Theo tính chất dãy tỉ số bằng nhau, có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{14}{7}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2.3=6\\y=2.4=8\end{matrix}\right.\)
Bạn tự kết luận ^^
Bài 1: bn ghi thiếu đề rùi đó
Bài 2:
ta có: \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{15}=\frac{y}{10}\)
\(3y=5z\Rightarrow\frac{y}{5}=\frac{z}{3}\Rightarrow\frac{y}{10}=\frac{z}{6}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=k\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{15}=k\Rightarrow x=15k\\\frac{y}{10}=k\Rightarrow y=10k\end{cases}}\)
z/6 = k => z = 6k
mà x.y = 600 => 15k.10k = 600
150.k2 = 600
k2 = 600:150
k2 = 4
=> k = 2 hoặc k = -2
TH1: k = 2
x = 15k => x = 15.2 => x = 30
y = 10k => y = 10.2 => y = 20
z = 6k => z = 6.2 => z = 12
TH2: k = -2
...
KL: (x;y;z) = { ( 30;20;12);(-30;-20;-12)}
Bài 3:
ta có: \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\)
\(3y=4z\Rightarrow\frac{y}{4}=\frac{z}{3}\Rightarrow\frac{y}{12}=\frac{z}{9}\)
\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{9}=\frac{2x}{16}=\frac{5y}{60}=\frac{z}{9}\)
ADTCDTSBN
có: \(\frac{2x}{16}=\frac{5y}{60}=\frac{z}{9}=\frac{2x-5y+z}{16-60+9}=\frac{14}{-35}=\frac{-2}{5}\)
\(\Rightarrow\frac{x}{8}=\frac{-2}{5}\Rightarrow x=\frac{-16}{5}\)
...
KL:...
a) \(7x=3y\Rightarrow\)\(\frac{x}{3}=\frac{y}{7}\)
Đặt \(\frac{x}{3}=\frac{y}{7}=k\Rightarrow x=3k;y=7k\)
Có: x.y=84
\(\Rightarrow3k\cdot7k=84\)
\(\Rightarrow k^2=4\Rightarrow\left[\begin{array}{nghiempt}k=2\\k=-2\end{array}\right.\)
Với k=2 thì x=6 ;y=14
Với k=-2 thì x=-6 ;y =-14
b) \(7x=3y\Rightarrow\)\(\frac{x}{3}=\frac{y}{7}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{7}=\frac{5y-2x}{5\cdot7-2\cdot3}=\frac{-4}{29}\)
=> \(\begin{cases}x=-\frac{12}{29}\\y=-\frac{28}{29}\end{cases}\)
c) \(2x=3y=5z\)
\(\Leftrightarrow\)\(\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\)
=> \(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)
Áp dụng tc của dãy tỉ số bằng nhau ta co:
\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+2y-3z}{15+2\cdot10-3\cdot6}\)
thiếu đề
\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+2y-3z}{15+2\cdot10-3\cdot6}=\frac{10}{17}\)
=>\(\begin{cases}x=\frac{150}{17}\\y=\frac{100}{17}\\z=\frac{60}{17}\end{cases}\)
@VỘI VÀNG QUÁ
a.
$7x-2y=5x-3y$
$\Leftrightarrow 2x=-y$. Thay vào điều kiện số 2 ta có:
$-y+3y=20$
$2y=20$
$\Rightarrow y=10$.
$x=\frac{-y}{2}=\frac{-10}{2}=-5$
b.
$2x=3y\Rightarrow \frac{x}{3}=\frac{y}{2}$
$3y=4z-2y\Rightarrow 5y=4z\Rightarrow \frac{y}{4}=\frac{z}{5}$
$\Rightarrow \frac{x}{6}=\frac{y}{4}=\frac{z}{5}$
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{6}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{6+4+5}=\frac{45}{15}=3$
$\Rightarrow x=6.3=18; y=4.3=12; z=5.3=15$
Theo bài ra ta có:
\(2x=5y\Rightarrow\frac{x}{5}=\frac{y}{2}\Rightarrow\frac{x}{20}=\frac{y}{8}\left(1\right)\)
\(3y=8z\Rightarrow\frac{y}{8}=\frac{z}{3}\left(2\right)\)
Từ (1) và (2) suy ra: \(\frac{x}{20}=\frac{y}{8}=\frac{z}{3}=\frac{x}{20}=\frac{2y}{16}=\frac{3z}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{20}=\frac{y}{8}=\frac{z}{3}=\frac{x}{20}=\frac{2y}{16}=\frac{3z}{9}=\frac{x-2y-3z}{20-16-9}=\frac{0,5}{-5}=-0,1\)
\(\Rightarrow\hept{\begin{cases}x=-0,1.20=-2\\y=-0,1.8=-0,8\\z=-0,1.3=-0,3\end{cases}}\)
Chúc bạn học giỏi nha!!!
K cho mik vs nhé Nguyến Hà My
a) Giải:
Ta có: \(2x=3y=4z\Rightarrow\frac{2x}{12}=\frac{3y}{12}=\frac{4z}{12}\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}=\frac{2x}{12}=\frac{3y}{12}=\frac{5z}{15}=\frac{2x+3y-5z}{12+12-15}=\frac{-1,8}{9}=-0,2\)
+) \(\frac{x}{6}=-0,2\Rightarrow x=-1,2\)
+) \(\frac{y}{4}=-0,2\Rightarrow y=-0,8\)
+) \(\frac{z}{3}=-0,2\Rightarrow z=-0,6\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(-1,2;-0,8;-0,6\right)\)
b) Giải:
Ta có: \(2x=5y\Rightarrow\frac{x}{5}=\frac{y}{2}\Rightarrow\frac{x}{20}=\frac{y}{8}\)
\(3y=8z\Rightarrow\frac{y}{8}=\frac{z}{3}\)
\(\Rightarrow\frac{x}{20}=\frac{y}{8}=\frac{z}{3}\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\frac{x}{20}=\frac{y}{8}=\frac{z}{3}=\frac{2y}{16}=\frac{x+2y+z}{20+16+3}=\frac{-39}{39}=-1\)
+) \(\frac{x}{20}=-1\Rightarrow x=-20\)
+) \(\frac{y}{8}=-1\Rightarrow y=-8\)
+) \(\frac{z}{3}=-1\Rightarrow z=-3\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(-20;-8;-3\right)\)
Ta có :
\(2x=3y=4x\)
\(\Rightarrow\frac{2x}{12}=\frac{3y}{12}=\frac{4z}{12}\)
\(\Rightarrow\frac{2x}{12}=\frac{3y}{12}=\frac{5z}{15}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có :
\(\frac{2x}{12}=\frac{3y}{12}=\frac{5z}{15}=\frac{2x+3y-5z}{12+12-15}=-\frac{1,8}{9}=-\frac{1}{5}\)
\(\Rightarrow\begin{cases}x=-\frac{6}{5}\\y=-\frac{4}{5}\\z=-\frac{3}{5}\end{cases}\)
b)
\(\begin{cases}2x=5y\\3y=8z\end{cases}\)
\(\Rightarrow\begin{cases}\frac{x}{5}=\frac{y}{2}\\\frac{y}{8}=\frac{z}{3}\end{cases}\)
\(\Rightarrow\begin{cases}\frac{x}{20}=\frac{y}{8}\\\frac{y}{8}=\frac{z}{3}\end{cases}\)
\(\Rightarrow\frac{x}{20}=\frac{y}{8}=\frac{z}{3}\)
\(\Rightarrow\frac{x}{20}=\frac{2y}{16}=\frac{z}{3}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có :
\(\Rightarrow\frac{x}{20}=\frac{2y}{16}=\frac{z}{3}=\frac{2y+x+z}{16+20+3}=-\frac{39}{39}=-1\)
\(\Rightarrow\begin{cases}x=-20\\y=-8\\z=-3\end{cases}\)