Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1a) \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\\frac{3}{2}x+\frac{1}{2}=1-4x\end{cases}}\)
=> \(\orbr{\begin{cases}-\frac{5}{2}x=-\frac{3}{2}\\\frac{11}{2}x=\frac{1}{2}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{1}{11}\end{cases}}\)
b) \(\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)
=>\(\left|\frac{5}{4}x-\frac{7}{2}\right|=\left|\frac{5}{8}x+\frac{3}{5}\right|\)
=> \(\orbr{\begin{cases}\frac{5}{4}x-\frac{7}{2}=\frac{5}{8}x+\frac{3}{5}\\\frac{5}{4}x-\frac{7}{2}=-\frac{5}{8}x-\frac{3}{5}\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{5}{8}x=\frac{41}{10}\\\frac{15}{8}x=\frac{29}{10}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)
c) TT
a, \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\-\frac{3}{2}x-\frac{1}{2}=4x-1\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}-4x=-1\\-\frac{3}{2}x-\frac{1}{2}-4x=-1\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{3}{5}\\x=\frac{1}{11}\end{cases}}\)
\(b,\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)
=> \(\left|\frac{5}{4}x-\frac{7}{2}\right|-0=\left|\frac{5}{8}x+\frac{3}{5}\right|\)
=> \(\frac{\left|5x-14\right|}{4}=\frac{\left|25x+24\right|}{40}\)
=> \(\frac{10(\left|5x-14\right|)}{40}=\frac{\left|25x+24\right|}{40}\)
=> \(\left|50x-140\right|=\left|25x+24\right|\)
=> \(\orbr{\begin{cases}50x-140=25x+24\\-50x+140=25x+24\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)
c, \(\left|\frac{7}{5}x+\frac{2}{3}\right|=\left|\frac{4}{3}x-\frac{1}{4}\right|\)
=> \(\orbr{\begin{cases}\frac{7}{5}x+\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\\-\frac{7}{5}x-\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{55}{4}\\x=-\frac{25}{164}\end{cases}}\)
Bài 2 : a. |2x - 5| = x + 1
TH1 : 2x - 5 = x + 1
=> 2x - 5 - x = 1
=> 2x - x - 5 = 1
=> 2x - x = 6
=> x = 6
TH2 : -2x + 5 = x + 1
=> -2x + 5 - x = 1
=> -2x - x + 5 = 1
=> -3x = -4
=> x = 4/3
Ba bài còn lại tương tự
Câu b) tạm thời ko bít làm =.=
Bài 1 :
\(d)\) \(\frac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}.\frac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=2x\)
\(\Leftrightarrow\)\(\frac{4^5.4}{3^5.3}.\frac{6^5.6}{2^5.2}=2x\)
\(\Leftrightarrow\)\(\frac{4^6}{3^6}.\frac{6^6}{2^6}=2x\)
\(\Leftrightarrow\)\(\frac{2^{12}}{3^6}.\frac{2^6.3^6}{2^6}=2x\)
\(\Leftrightarrow\)\(\frac{2^{12}}{3^6}.\frac{3^6}{1}=2x\)
\(\Leftrightarrow\)\(2^{12}=2x\)
\(\Leftrightarrow\)\(x=\frac{2^{12}}{2}\)
\(\Leftrightarrow\)\(x=2^{11}\)
\(\Leftrightarrow\)\(x=2048\)
Vậy \(x=2048\)
Chúc bạn học tốt ~
Bài 1 :
\(a)\) Ta có :
\(4+\frac{x}{7+y}=\frac{4}{7}\)
\(\Leftrightarrow\)\(\frac{x}{7+y}=\frac{4}{7}-4\)
\(\Leftrightarrow\)\(\frac{x}{7+y}=\frac{-24}{7}\)
\(\Leftrightarrow\)\(\frac{x}{-24}=\frac{7+y}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{-24}=\frac{7+y}{7}=\frac{x+7+y}{-24+7}=\frac{22+7}{-17}=\frac{29}{-17}=\frac{-29}{17}\)
Do đó :
\(\frac{x}{-24}=\frac{-29}{17}\)\(\Rightarrow\)\(x=\frac{-29}{17}.\left(-24\right)=\frac{696}{17}\)
\(\frac{7+y}{7}=\frac{-29}{17}\)\(\Rightarrow\)\(y=\frac{-29}{17}.7-7=\frac{-322}{17}\)
Vậy \(x=\frac{696}{17}\) và \(y=\frac{-322}{17}\)
Chúc bạn học tốt ~
- Ta chứng minh bất đẳng thức phụ dưới đây: \(\frac{1}{\sqrt{x}\left(x+1\right)}=\frac{\sqrt{x}}{x\left(x+1\right)}=\sqrt{x}\left(\frac{1}{x}-\frac{1}{x+1}\right)=\sqrt{x}\left(\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x+1}}\right)\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{x+1}}\right)\)\(=\left(1+\frac{\sqrt{x}}{\sqrt{x+1}}\right)\left(\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x+1}}\right)< 2\left(\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x+1}}\right)\)
Áp dụng : \(\frac{1}{\sqrt{1}.2}< 2.\left(1-\frac{1}{\sqrt{2}}\right)\)
\(\frac{1}{\sqrt{2}.3}< 2.\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)\)
...................................
\(\frac{1}{\sqrt{2015}.2016}< 2.\left(\frac{1}{\sqrt{2015}}-\frac{1}{\sqrt{2016}}\right)\)
Cộng các BĐT trên với nhau được : \(\frac{1}{2}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{2016\sqrt{2015}}< 2\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2015}}-\frac{1}{\sqrt{2016}}\right)=2\left(1-\frac{1}{\sqrt{2016}}\right)< 2\left(1-\frac{1}{\sqrt{2025}}\right)=\frac{88}{45}\)
Từ đó suy ra đpcm
Cái ............... là gì vậy bn
\(a,-\frac{3}{2}-2x+\frac{3}{4}=-2\)
=> \(-\frac{3}{2}+\left(-2x\right)+\frac{3}{4}=-2\)
=> \(\left(-\frac{3}{2}+\frac{3}{4}\right)+\left(-2x\right)=-2\)
=> \(-\frac{3}{4}+\left(-2x\right)=-2\)
=> \(-2x=-2-\left(-\frac{3}{4}\right)=-\frac{5}{4}\)
=> \(x=-\frac{5}{4}:\left(-2\right)=\frac{5}{8}\)
Vậy \(x\in\left\{\frac{5}{8}\right\}\)
\(b,\left(\frac{-2}{3}x-\frac{3}{4}\right)\left(\frac{3}{-2}-\frac{10}{4}\right)=\frac{2}{5}\)
=> \(\left(-\frac{2}{3}x-\frac{3}{4}\right).\left(-4\right)=\frac{2}{5}\)
=> \(-\frac{2}{3}x-\frac{3}{4}=\frac{2}{5}:\left(-4\right)=-\frac{1}{10}\)
=> \(-\frac{2}{3}x=-\frac{1}{10}+\frac{3}{4}=\frac{13}{20}\)
=> \(x=\frac{13}{20}:\left(-\frac{2}{3}\right)=-\frac{39}{40}\)
Vậy \(x\in\left\{-\frac{39}{40}\right\}\)
\(c,\frac{x}{2}-\left(\frac{3x}{5}-\frac{13}{5}\right)=-\left(\frac{7}{5}+\frac{7}{10}x\right)\)
=> \(\frac{x}{2}-\frac{3x}{5}+\frac{13}{5}=-\frac{7}{5}-\frac{7}{10}x\)
=> \(10.\frac{x}{2}-10.\frac{3x}{5}+10.\frac{13}{5}=10.\frac{-7}{5}-10.\frac{7}{10}x\)
( chiệt tiêu )
=> \(5x-6x+26=-14-7x\)
=> \(-x+26=-14-7x\)
=> \(-x+7x=-14-26\)
=> \(6x=-40\)
=> \(x=-40:6=\frac{20}{3}\)
Vậy \(x\in\left\{\frac{20}{3}\right\}\)
\(d,\frac{2x-3}{3}+\frac{-3}{2}=\frac{5-3x}{6}-\frac{1}{3}\)
=> \(6.\frac{2x-3}{3}+6.\frac{-3}{2}=6.\frac{5-3x}{6}-6.\frac{1}{3}\)
( chiệt tiêu )
=> \(2\left(2x-3\right)-9=5-3x-2\)
=> \(4x-6-9=3-3x\)
=> \(4x-15=3-3x\)
=> \(4x+3x=3+15\)
=> \(7x=18\)
=> \(x=18:7=\frac{18}{7}\)
Vậy \(x\in\left\{\frac{18}{7}\right\}\)
\(e,\frac{2}{3x}-\frac{3}{12}=\frac{4}{x}-\left(\frac{7}{x}.2\right)\)
ĐKXĐ : \(x\ne0\)
=> \(\frac{2}{3x}-\frac{1}{4}=\frac{4}{x}-\frac{14}{x}\)
=> \(\frac{2}{3x}-\frac{4}{x}+\frac{14}{x}=\frac{1}{4}\)
=> \(\frac{2}{3x}-\frac{12}{3x}+\frac{42}{3x}=\frac{1}{4}\)
=> \(\frac{32}{3x}=\frac{1}{4}\)
=> \(3x=32.4:1=128\)
=> \(x=128:3=\frac{128}{3}\)
Vậy \(x\in\left\{\frac{128}{3}\right\}\)
\(k,\frac{13}{x-1}+\frac{5}{2x-2}-\frac{6}{3x-3}\)
ĐKXĐ :\(x\ne1;\)
=> \(\frac{13}{x-1}+\frac{5}{2\left(x-1\right)}-\frac{6}{3\left(x-1\right)}\)
=> \(\frac{13}{x-1}+\frac{5}{2\left(x-1\right)}-\frac{1}{x-1}\)
=> \(\frac{2.13}{2\left(x-1\right)}+\frac{5}{2\left(x-1\right)}-\frac{2.1}{2.\left(x-1\right)}\)
=> \(\frac{26+5-2}{2\left(x-1\right)}\)
=> \(\frac{29}{2\left(x-1\right)}\)
\(m,\left(\frac{3}{2}-\frac{2}{-5}\right):x-\frac{1}{2}=\frac{3}{2}\)
=> \(\frac{19}{10}:x-\frac{1}{2}=\frac{3}{2}\)
=> \(\frac{19}{10}:x=\frac{3}{2}+\frac{1}{2}=2\)
=> \(x=\frac{19}{10}:2=\frac{19}{20}\)
Vậy \(x\in\left\{\frac{19}{20}\right\}\)
\(n,\left(\frac{3}{2}-\frac{5}{11}-\frac{3}{13}\right)\left(2x-1\right)=\left(\frac{-3}{4}+\frac{5}{22}+\frac{3}{26}\right)\)
=> \(\frac{233}{286}\left(2x-1\right)=-\frac{233}{572}\)
=> \(2x-1=-\frac{233}{572}:\frac{233}{286}=-\frac{1}{2}\)
=> \(2x=-\frac{1}{2}+1=\frac{1}{2}\)
=> \(x=\frac{1}{2}:2=\frac{1}{4}\)
Vậy \(x\in\left\{\frac{1}{4}\right\}\)