Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)
=> \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) và \(x.y.z=810.\)
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=5k\end{matrix}\right.\)
\(x.y.z=810\)
=> \(2k.3k.5k=810\)
=> \(30k^3=810\)
=> \(k^3=810:30\)
=> \(k^3=27\)
=> \(k=3.\)
Với \(k=3\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.3=6\\y=3.3=9\\z=5.3=15\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(6;9;15\right).\)
Chúc bạn học tốt!
a) Ta có: 3x = 2y => \(\frac{x}{2}=\frac{y}{3}\) => \(\frac{x}{10}=\frac{y}{15}\)
7y = 5z => \(\frac{y}{5}=\frac{z}{7}\) => \(\frac{y}{15}=\frac{z}{21}\)
=> \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng t/c dãy tỉ số = nhau , ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\) = \(\frac{x-y+z}{10-15+21}\) = \(\frac{32}{16}\) = 2
Vậy: x = 2.10 = 20
y = 2.15 = 30
z = 2.21 = 42
b) Ta có: 2x = 3y = 5z
=> \(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{3}\) => \(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)
Áp dụng t/c dãy tỉ số = nhau, ta đc:
\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\) = \(\frac{x+y-z}{15+10-6}\) = \(\frac{95}{19}\) = 5
Vậy: x = 5.15 = 75
y = 5.10 = 50
z = 5.6 = 30
a
Đặt \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=k\)
\(\Rightarrow x=2k+1;y=3k+2;z=4k+3\)
Thay vào,ta được:
\(2\left(2k+1\right)+3\left(3k+2\right)-\left(4k+3\right)=50\)
\(\Leftrightarrow4k+2+9k+6-4k-3=50\)
\(\Leftrightarrow9k+5=50\)
\(\Leftrightarrow9k=45\)
\(\Leftrightarrow k=5\)
\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}=\frac{5x-5}{10}=\frac{3y+9}{12}=\frac{4z-20}{24}\)
\(=\frac{5x-5-3y-9-4z+20}{10-12-24}=\frac{\left(5x-3y-4z\right)+\left(20-5-9\right)}{26}=\frac{46+6}{26}=2\)
\(\Rightarrow x=2\cdot2+1=5\)
\(y=4\cdot2-3=5\)
\(z=2\cdot6+5=17\)
Câu c tương tự như câu 1
1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)
=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
=>\(x=3\cdot20=60\)
\(y=3\cdot24=72\)
\(z=3\cdot21=63\)
3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)
=> \(x=1\cdot15=15\)
\(y=1\cdot7=7\)
\(z=1\cdot3=3\)
\(t=1\cdot1=1\)
\(\frac{x-1}{2}=\frac{y+3}{3}=\frac{z-5}{6}\)\(\Rightarrow\frac{3x-3}{6}=\frac{4y+12}{16}=\frac{5z-25}{30}\)
áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\frac{3x-3}{6}=\frac{4y+12}{16}=\frac{5z-25}{30}=\frac{5z-30-3x+3-4y-12}{30-16-6}=\frac{50-34}{8}=\frac{16}{8}=2\)
\(\frac{3x-3}{6}=2\) 3x-3=12 3x=15 x=5 | \(\frac{4y+12}{16}=2\) 4y+12=32 4y=20 y=5 | \(\frac{5z-25}{30}=2\) 5z-25=60 5z=85 z=17 |
Cái sai của bạn là sao không ghép với cái phân số ban đầu=> hệ số nhỏ đỡ mệt hơn không
x-1=2.2=> x=5
y+3=4.2=> y=5
z-5=6.2=>z=17
Ta có: \(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\)
\(\Rightarrow\) \(\frac{z-5}{6}=\frac{x-1}{2}=\frac{y+3}{4}\)
\(\Rightarrow\frac{5z-25}{30}=\frac{3x-3}{6}=\frac{4y+12}{16}=\frac{\left(5z-3x-4y\right)-25+3-12}{30-6-16}=\frac{50-34}{8}=\frac{16}{8}=2\)
\(\Rightarrow\)x = 5
y = 5
z = 17
x-1/2=y+3/4=z-5/6=k suy ra x-1=2k;y+3=4k;z-5=6k va x=2k+1;y=4k-3;z=6k+5
5(6k+5)-3(2k+1)-4(4k-3)=25+30k-3+6k-16k-12=(25-3-12)+(30k+6k-16k)
=10+20k=50 suy ra 20k=50-10=40 suy ra k=40:20=2
x=2.2+1=5
y=2.4-3=5
z=2.6+5=17
\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\) và 5z - 3x - 4y = 50
=> \(\frac{3\left(x-1\right)}{6}=\frac{4\left(y+3\right)}{16}=\frac{5\left(z-5\right)}{30}\)
=> \(\frac{3x-3}{6}=\frac{4y+12}{16}=\frac{5z-25}{30}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{3x-3}{6}=\frac{4y+12}{16}=\frac{5z-25}{30}=\frac{5z-25-3x+3-4y-12}{30-6-16}=\frac{50-34}{8}=\frac{16}{8}=2\)
=> 3x - 3 = 12 => 3x = 15 => x = 5
4y + 12 = 32 => 4y = 20 => y = 5
5z - 25 = 60 => 5z = 85 => z = 17
Vậy x = 5 , y = 5 , z = 17
\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)
\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)
\(\hept{\begin{cases}\frac{x}{2}=\frac{x}{3}\\\frac{y}{5}=\frac{x}{7}\end{cases}\Rightarrow}\frac{x}{2}=\frac{5y}{15};\frac{3y}{15}=\frac{z}{7}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chát dãy tỉ số = nhau ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
\(\Rightarrow\frac{x}{10}=2\Rightarrow x=20\)
\(\frac{y}{15}=2\Rightarrow y=30\)
\(\frac{z}{21}=3\Rightarrow z=63\)
b, Tự làm
c, \(5x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{5}\)
\(2x=3z\Leftrightarrow\frac{x}{3}=\frac{z}{2}\)
\(\Leftrightarrow\frac{x}{2}=\frac{y}{5};\frac{x}{3}=\frac{z}{2}\)
\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{x}{6}=\frac{z}{10}\)
\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)
Đặt \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=k(k\inℤ)\)
\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\)
\(\Leftrightarrow x\cdot y=6k\cdot15k=90\)
\(\Leftrightarrow90:k^2=90\Leftrightarrow k^2=1\Leftrightarrow k=\pm1\)
\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=15\\z=10\end{cases}}\)hay \(\hept{\begin{cases}x=-6\\y=-15\\z=-10\end{cases}}\)
Vậy \((x,y)\in(6,15);(-6,-15)\)
\(\text{Câu 1: }3x=4y;2y=5z\Rightarrow\frac{x}{4}=\frac{y}{3};\frac{y}{5}=\frac{z}{2}\Rightarrow\frac{x}{20}=\frac{y}{15};\frac{y}{15}=\frac{z}{6}\)
\(\Rightarrow\frac{x}{20}=\frac{y}{15}=\frac{z}{6}\)
\(\text{Áp dụng tính chất của dãy tỉ số bằng nhau ta có:}\)
\(\frac{x}{20}=\frac{y}{15}=\frac{z}{6}=\frac{x+y+z}{20+15+6}=\frac{58}{41}\)
xme lại đề