Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) \(\left(2x^2+2x+1\right)\left(2x^2-2x-1\right)+\left(2x+1\right)^2\)
\(=4x^4-\left(2x+1\right)^2+\left(2x+1\right)^2\)
\(=4x^4\)
a) \(\left(3x^2+3x+1\right)\left(3x^2-3x+1\right)-\left(3x^2+1\right)^2\)
\(=\left(3x^2+1\right)^2-9x^4-\left(3x^2+1\right)^2\)
\(=-9x^4\)
1
a) x^2+2x-5 b) x^2+x+7 9 (dư 8)
2
x=2; x = -(3*căn bậc hai(7)*i+1)/2;x = (3*căn bậc hai(7)*i-1)/2;
3
a=2
a/ (3x+7)(2x+3)−(3x−5)(2x+11)
=6x2+9x+14x+21−6x2−33x+10x+55
=76
Vậy biểu thức sau ko phụ thuộc vào biến (đfcm)
b/ (3x2−2x+1)(x2+2x+3)−4x(x2+1)−3x2(x2+2)
=3x4+6x3+9x2−2x3−4x2−6x+x2+2x+3−4x3−4x−3x4−6x2
=3
a/ \(\left(3x+7\right)\left(2x+3\right)-\left(3x-5\right)\left(2x+11\right)\)
\(=6x^2+9x+14x+21-6x^2-33x+10x+55\)
\(=76\)
Vậy....
b/ \(\left(3x^2-2x+1\right)\left(x^2+2x+3\right)-4x\left(x^2+1\right)-3x^2\left(x^2+2\right)\)
\(=3x^4+6x^3+9x^2-2x^3-4x^2-6x+x^2+2x+3-4x^3-4x-3x^4-6x^2\)
\(=3\)
Vậy...
\(b,\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)
\(\Leftrightarrow x^3+8-x^3-2x=15\)
\(\Leftrightarrow-2x=15-8=7\)
\(\Leftrightarrow x=\frac{-7}{2}\)
Vậy \(x=\frac{-7}{2}\)
a)= \(\frac{\left(2x+3\right)^2}{2x^2+3x-4x-6}\)
=\(\frac{\left(2x+3\right)^2}{x\left(2x+3\right)-2\left(2x+3\right)}\)
= \(\frac{\left(2x+3\right)^2}{\left(x-2\right)\left(2x+3\right)}\)
=\(\frac{2x+3}{x-2}\)
b) = \(\frac{3\left|x-4\right|}{3x^2-3x-1296}\)
= \(\frac{3\left|x-4\right|}{3\left(x^2-x-432\right)}\)
=\(\frac{\left|x-4\right|}{x^2-x-432}\)