Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^2+3xy-2y^2=7\Leftrightarrow2x^2+3xy+\left(-2y^2-7\right)=0\)
\(\Delta=9y^2-8\left(-2y^2-7\right)=25y^2+56>0\)=> luôn có hai nghiệm phân biệt
Để pt có nghiệm nguyên thì \(25y^2+56=k^2\Leftrightarrow\left(k-5y\right)\left(k+5y\right)=56\)
Xét các trường hợp được \(\left(k;y\right)=\left(\pm9;\pm1\right)\)
Với y = 1 được x = -3 (nhận) hoặc x = 3/2 (loại)
Với y = -1 được x = 3 (nhận) hoặc x = -3/2 (loại)
Vậy (x;y) = (-3;1) ; (3;-1)
Từ pt thứ 2, ta thấy \(y^2⋮9\Leftrightarrow y⋮3\) \(\Leftrightarrow y=3z\left(z\inℤ\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+3xz=2019\\9z^2-9xz=99\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^2+3xz=2019\\z^2-xz=11\end{matrix}\right.\) (*)
Từ pt đầu tiên của (*), ta thấy \(x⋮3\Leftrightarrow x=3t\left(t\inℤ\right)\)
Khi đó \(9t^2+9tz=2019\) \(\Rightarrow2019⋮9\), vô lí.
Do đó, pt đã cho không có nghiệm nguyên.