Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì x-7 là ước của x-9 \(\Rightarrow\hept{\begin{cases}x-9⋮x-7\\x-7⋮x-7\end{cases}}\)
\(\Rightarrow x-9-x+7⋮x-7\)
\(\Leftrightarrow-2⋮x-7\)
\(\Rightarrow x-7\in\left\{\pm1;\pm2\right\}\)
\(\Leftrightarrow x\in\left\{-8;-6;-5;-9\right\}\)
B1 : x + (x+1) + (x+2) + ...+ (x+35) = 0
x + x +1 + x+ 2+...+ x +35 = 0
x + x.35 + (1+2+...+35) = 0
x.36 + 630 =0
x.36 = -630
x = -630 : 36
x =- 17.5
vì x,y,z \(\in\)Z nên | x | \(\in\)N ; | y | \(\in\)N ; | z | \(\in\)N
Vậy | x | + | y | + | z | \(\ge\)0 ( 1 )
Mà | x | + | y | + | z | = 0 ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)| x | = | y | = | z | = 0
Do đó : x = y = z = 0
Vì GTTĐ của 1 số luôn lớn hơn hoặc =0.
Mà |x|+|y|+|z|=0.
=>|x|=|y|=|z|=0.
=>x=y=z=0(thỏa mãn).
Vậy ....
Ta có: 2xy + y = 18 - 2x
=> 2xy + y - 18 + 2x = 0
=> y(2x + 1) + (2x + 1) = 19
=> (y + 1)(2x + 1) = 19
=> y + 1; 2x + 1 \(\in\)Ư(19) = {1; -1; 19; -19}
lập bảng :
2x + 1 | 1 | -1 | 19 | -19 |
y + 1 | 19 | -19 | 1 | -1 |
x | 0 | -1 | 9 | -10 |
y | 18 | -20 | 0 | -2 |
Vậy ...
\(2xy+y=18-2x\)
\(\Leftrightarrow2xy+2x+y+1=17\)
\(\Leftrightarrow2xy+2x+\left(y+1\right)=17\)
\(\Leftrightarrow2x\left(y+1\right)+\left(y+1\right)=17\)
\(\Leftrightarrow\left(y+1\right)\left(2x+1\right)=17\)
\(\Rightarrow\left(y+1\right)\)và \(\left(2x+1\right)\inƯ\left(17\right)=(\pm1:\pm17)\)
Lập Bảng
2x+1 | 1 | 17 | -1 | -17 |
y+1 | 17 | 1 | -17 | -1 |
x | 0 | 8 | -1 | -8 |
y | 16 | 0 | -18 | -2 |
Do \(\frac{3+x}{7+y}=\frac{3}{7}\)=> x=3p, y=7q (p, q\(\in\)Z)
Ta có: x+y=3p+7q=20 hay 3(p+q)+4q=20 => 0<p+q<6
Do 20\(⋮\)4, 4q\(⋮\)4 => 3(p+q)\(⋮\)4 mà (3,4)=1 => p+q\(⋮\)4.
=> p+q=4 => q=(20-3.4):4=2 => y=2.7=14
=> p=4-2=2 => x=2.3=6
=>\(\frac{3+x}{7+y}=\)một phân số có thể rút gọn thành\(\frac{3}{7}\)
Giả sử x=3; y=7. Vì \(\frac{3+3}{7+7}=\frac{6}{14}=\frac{3}{7}\)Nhưng 3+7=10 (loại)
x=6; y=14. Vì\(\frac{3+6}{7+14}=\frac{9}{21}=\frac{3}{7}\)Và 6+14=20 (thỏa mãn)
Vậy x=6; y=14
\(\left|x-2y\right|+\left|y-2020\right|=0\)
Ta có : \(\hept{\begin{cases}\left|x-2y\right|\ge0\forall x;y\\\left|y-2020\right|\ge0\forall y\end{cases}}\Rightarrow\left|x-2y\right|+\left|y-2020\right|\ge0\forall x;y\)
Dấu ''='' xảy ra : \(\hept{\begin{cases}x=2y\\y=2020\end{cases}\Leftrightarrow\hept{\begin{cases}x=4040\\y=2020\end{cases}}}\)
Vậy \(\left\{x;y\right\}=\left\{4040;2020\right\}\)
A=\(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2014}{2015}.\frac{2015}{2016}\)
A=\(\frac{1.2.3.4...2015}{2.3.4...2016}=\frac{1}{2016}\)
Hok tốt
A = \(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{2015}\right).\left(1-\frac{1}{2016}\right)\)
= \(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2014}{2015}.\frac{2015}{2016}\)
= \(\frac{1}{2016}\)
Vậy ...