Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3x -xy + 6y- 18 = 4 -18
x(3-y) + 6(y -3) = -14 => x(y-3) -6(y-3) =14
(y-3)(x-6) =14
y-3 | 1 | -1 | 14 | -14 | 2 | -2 | 7 | -7 |
x-6 | 14 | -14 | 1 | -1 | 7 | -7 | 2 | -2 |
y | 4 | 2 | 17 | -11 | 5 | 1 | 10 | -4 |
x | 20 | -8 | 7 | 5 | 13 | -1 | 8 | 4 |
bai thi .....................kho..........................kho..............troi.................thilanh.............................ret..................wa.........................dau................wa......................tich....................ung.....................ho.....................cho............do.................lanh
Ta có : x.y = 28
=> 28 chia hết cho x,y
=> x,y thuộc Ư(28) = {1;2;4;7;14;28}
Ta có : x = 1 thì y = 28 (ngược lại)
x = 2 thì y = 14 (ngược lại)
x = 4 thì y = 7 ( ngược lại)
a) x.y=11
x.y= 1.11=11.1
Vậy x= 1; y=11
x= 11; y=1
b) x.y=12
x.y=1.12=12.1
Vậy x=1; y=12
x=12; y=1
c) (x+1).(y+3)=6
(x+1).(y+3)=1.6=6.1
x+1= 1 y+1= 6 x+1=6 y+1=1
x = 1-1 y = 6-1 x = 6-1 y = 1-1
x = 0 y = 5 x = 5 y = 0
Vậy x=0; y=5
x=5; y=0
d) 1+2+3+...+x=55
1+2+3+...+10=55
Vậy x=10
1.x=1;5
2.x=11
3.x=1;y=4
4.a)a=2;12 b)a=1;2
nho h cho minh nha
a, xy=-28
=>x,y E {1;-1;2;-2;4;-4;7;-7;14;-14;28;-28}
b, (2x-1)(4y-2)=-42
=>2x-1 và 4y-2 E Ư(-42)={1;-1;2;-2;3;-3;6;-6;7;-7;14;-14;21;-21;42;-42}
Mà 2y-1 là số lẻ => 2y-1 E {1;-1;3;-3;7;-7;21;-21}
=>4y-2 E {2;-2;6;-6;14;-14;42;-42}
Ta có bảng:
2x-1 | 1 | -1 | 3 | -3 | 7 | -7 | 21 | -21 |
4y-2 | -42 | 42 | -14 | 14 | -6 | 6 | -2 | 2 |
x | 1 | 0 | 2 | -1 | 4 | -3 | 11 | -10 |
y | -10 | 11 | -3 | 4 | -1 | 2 | 0 | 1 |
c, giống b nhưng ko cần lập luận lẻ hay chẵn
d, xy+3x-7y=21
=>x(y+3)-7y-21=21-21
=>x(y+3)-7(y+3)=0
=>(x-7)(y+3)=0
=> \(\orbr{\begin{cases}x-7=0\\y+3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=7\\y=-3\end{cases}}}\)
a) \(3xy-y+2x=1\)
\(\Leftrightarrow y=\dfrac{1-2x}{3x-1}\)
\(\Leftrightarrow3y=\dfrac{3-6x}{3x-1}=-2+\dfrac{1}{3x-1}=P\)
Để x;y thuộc N thì \(\left(3x-1\right)\inƯ\left(1\right)\)
\(\Leftrightarrow\left(3x-1\right)\in\left\{-1;1\right\}\)
\(\Leftrightarrow x\in\left\{0;\dfrac{2}{3}\right\}\)
loại \(x=\dfrac{2}{3}\)
\(x=0\Rightarrow P=-3=3y\Rightarrow y=-1\left(-1\notin N\right)\)
loại x=0
Vậy không tồn tại x,y để \(3xy-y+2x=1\)
b)\(xy+4y+x=2\)
\(y=\dfrac{2-x}{x+4}=-1+\dfrac{6}{x+4}\)
Để x;y thuộc N thì \(\left(x+4\right)\inƯ\left(6\right)\)
\(\Leftrightarrow\left(x+4\right)\in\left\{-6;-3;-2-1;1;2;3;6\right\}\)
\(\Leftrightarrow x\in\left\{-10;-7;-6-5;-3;-2;-1;2\right\}\)
vì \(x\in N\) nên nhận x=2
x=2 \(\Rightarrow y=0\left(\in N\right)\)
nhận x=2
vậy vậy x=2 và y=0 thì \(xy+4y+x=2\)