Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left(x^2-6xy+9y^2\right)+\left(x^2+6x+9\right)+\left(z^2-8z+16\right)=0\)
\(\Leftrightarrow\left(x-3y\right)^2+\left(x+3\right)^2+\left(z-4\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3y=0\\x+3=0\\z-4=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-1\\z=4\end{matrix}\right.\)
\(2x^2+y^2-2xy-8x+16=0\)
\(\Leftrightarrow\left(x^2-8x+16\right)+\left(x^2-2xy+y^2\right)=0\)
\(\Leftrightarrow\left(x-4\right)^2+\left(x-y\right)^2=0\)
Do: \(\left\{{}\begin{matrix}\left(x-4\right)^2\ge0\\\left(x-y\right)^2\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left(x-4\right)^2+\left(x-y\right)^2\ge0\)
Mặt khác: \(\left(x-4\right)^2+\left(x-y\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-4=0\\x-y=0\end{matrix}\right.\)
\(\Leftrightarrow x=y=4\)
Vậy: ...
\(x^2+2y^2+2xy-14y+49=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(y-7\right)^2=0\)
Dấu '=' xảy ra khi y=7 và x=-7
\(2xy-6=4x-y\Leftrightarrow2xy-4x+y-2=4\)
\(\Leftrightarrow2x\left(y-2\right)+\left(y-2\right)=4\Leftrightarrow\left(y-2\right)\left(2x+1\right)=4\)(1)
Có \(x,y\inℤ\Rightarrow\hept{\begin{cases}2x+1\inℤ\\y-2\inℤ\end{cases}}\)
Từ (1) => 2x + 1 thuộc Ư(4) ; y - 2 thuộc Ư(4)
+) \(\hept{\begin{cases}2x+1=1\\y-2=4\end{cases}}\) +) \(\hept{\begin{cases}2x+1=2\\y-x=2\end{cases}}\)
+) \(\hept{\begin{cases}2x+1=4\\y-2=1\end{cases}}\) +) \(\hept{\begin{cases}2x+1=-2\\y-2=-2\end{cases}}\)
+) \(\hept{\begin{cases}2x+1=-1\\y-2=-4\end{cases}}\) +) \(\hept{\begin{cases}2x+1=-4\\y-2=-1\end{cases}}\)
Còn lại rất dễ bạn tự làm tiếp nhé
Chú ý điều kiện x ; y nguyên nhé !!!!
Tích cho mk nhoa !!!!! ~~
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+4\left(x+y\right)+4+\left(x^2-12x+36\right)=0\)
\(\Leftrightarrow\left(x+y\right)^2+4\left(x+y\right)+4+\left(x-6\right)^2=0\)
\(\Leftrightarrow\left(x+y+2\right)^2+\left(x-6\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-6=0\\x+y+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=6\\y=-8\end{matrix}\right.\)
\(y^2+2xy-12x+4\left(x+y\right)+2x^2+40=0\\ \Leftrightarrow\left[\left(x^2+2xy+y^2\right)+4\left(x+y\right)+4\right]+\left(x^2-12x+36\right)=0\\ \Leftrightarrow\left(x+y+2\right)^2+\left(x-6\right)^2=0\)
Vì \(\left\{{}\begin{matrix}\left(x+y+2\right)^2\ge0\forall x,y\\\left(x-6\right)^2\ge0\forall x\end{matrix}\right.\)
Nên \(\left(x+y+2\right)^2+\left(x-6\right)^2\ge0\forall x,y\)
Dấu"=" xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}x+y+2=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-8\\x=6\end{matrix}\right.\)
Vậy x = 6 và y = -8