K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2019

\(12x^2+6xy+3y^2=28\left(x+y\right)\)

\(\Leftrightarrow3y^2+2\left(3x-14\right)y+12x^2-28x=0\)      (1)

Xem (1) là phương trình bậc hai ẩn y thì (1) có nghiệm nguyên khi và chỉ khi \(\Delta'\)là số chính phương

\(\Delta'=\left(3x-14\right)^2-36x^2+84x=k^2\ge0\)

      \(=-27x^2+196=k^2\ge0\Rightarrow27x^2\le196\Rightarrow x^2\le7\)

                                                               \(\Rightarrow x\in\left\{0;\pm1;\pm2\right\}\)

Nếu x = 0 thì y = 0

       x = 1 thì y = 8

       x = -1 thì y = 10

      x = \(\pm2\)thì y \(\notin Z\)

Vậy các cặp số (x;y) thỏa mãn đề bài là : (0;0);(1;8);(-1;10)

3 tháng 5 2019

a) \(6xy+4x-9y-7=0\)

  \(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)

\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)

\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)

Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)

Tự làm típ

4 tháng 5 2019

\(A=x^3+y^3+xy\)

\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)

\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))

\(A=x^2+y^2\)

Áp dụng bất đẳng thức Bunhiakovxky ta có :

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)

\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)

Hay \(x^3+y^3+xy\ge\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Lời giải:
$3x^2+4y^2+12x+3y+5=0$

$\Leftrightarrow 3(x^2+4x+4)+4y^2+3y-7=0$

$\Leftrightarrow 3(x+2)^2+(2y+\frac{3}{4})^2-\frac{121}{16}=0$

$\Leftrightarrow 3(x+2)^2=\frac{121}{16}-(2y+\frac{3}{4})^2\leq \frac{121}{16}$

$\Rightarrow (x+2)^2\leq \frac{121}{48}< 4$

$\Rightarrow -2< x+2< 2$

$\Rightarrow -4< x< 0$

$\Rightarrow x\in \left\{-3; -2; -1\right\}$

Đê đây bạn thay giá trị $x$ vào pt ban đầu để tìm $y$ thôi.

AH
Akai Haruma
Giáo viên
22 tháng 5 2021

3y^2 1 là sao bạn?

NV
8 tháng 1

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+8\left(x-y\right)+16=3-2y^2\)

\(\Leftrightarrow\left(x-y\right)^2+8\left(x-y\right)+16=3-2y^2\)

\(\Leftrightarrow\left(x-y+4\right)^2=3-2y^2\) (1)

Do \(\left(x-y+4\right)^2\ge0;\forall x,y\)

\(\Rightarrow3-2y^2\ge0\Rightarrow y^2\le\dfrac{3}{2}\Rightarrow\left[{}\begin{matrix}y^2=0\\y^2=1\end{matrix}\right.\)

\(\Rightarrow y=\left\{-1;0;1\right\}\)

- Với \(y=-1\) thay vào (1):

\(\left(x+5\right)^2=1\Rightarrow\left[{}\begin{matrix}x+5=1\\x+5=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-4\\x=-6\end{matrix}\right.\)

- Với \(y=1\) thay vào (1):

\(\Rightarrow\left(x+3\right)^2=1\Rightarrow\left[{}\begin{matrix}x+3=1\\x+3=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-2\\x=-4\end{matrix}\right.\)

- Với \(y=0\)

\(\Rightarrow\left(x+4\right)^2=3\) (ko có nghiệm nguyên do 3 ko phải SCP)

27 tháng 9 2015

Có : \(x^2+2y^2+2xy+3y-4=0\)

\(\Rightarrow x^2+2xy+y^2+y^2+2.\frac{3}{2}y+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2-4=0\)

\(\Rightarrow\left(x+y\right)^2+\left(y+\frac{3}{2}\right)^2-\frac{25}{4}=0\)

...............................................................................................

NV
1 tháng 1

\(\Leftrightarrow x^3+y^3-x^2y-xy^2-6xy=0\)

\(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)-xy\left(x+y+6\right)=0\)

Đặt \(\left\{{}\begin{matrix}x+y=a\\xy=b\end{matrix}\right.\) với \(a^2\ge4b\) 

\(\Rightarrow a^3-3ab-b\left(a+6\right)=0\)

\(\Leftrightarrow a^3-2b\left(2a+3\right)=0\)

\(\Leftrightarrow8a^3+27-16b\left(2a+3\right)=27\)

\(\Leftrightarrow\left(2a+3\right)\left(4a^2-6a+9\right)-16b\left(2a+3\right)=27\)

\(\Leftrightarrow\left(2a+3\right)\left(4a^2-6a+9-16b\right)=27\)

Tới đây là pt ước số khá đơn giản, chắc em tự hoàn thành bài toán được.