K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2017

tách ra ta đc (x+y)^2 + y^2=7 =>y^2 < 7 => y^2= 1 hoặc 4 thay vào rồi tính x 

12 tháng 7 2017

Cảm ơn bạn nhìu nha!~~~

13 tháng 7 2017

\(x^2+2xy+2y^2=7.\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+y^2=7\)

\(\Leftrightarrow\left(x+y\right)^2+y^2=7\)

Vì \(\hept{\begin{cases}\left(x+y\right)^2>0\\y^2>0\end{cases}}\)nên \(y^2< 7\)

Mà y nguyên dương nên suy ra \(\orbr{\begin{cases}y^2=1\\y^2=4\end{cases}\Rightarrow\orbr{\begin{cases}y=1\\y=2\end{cases}\Rightarrow}\orbr{\begin{cases}\left(x+y\right)^2=7-1=6\\\left(x+y\right)^2=7-4=3\end{cases}}}\)

\(\Leftrightarrow\orbr{\begin{cases}x+y=\sqrt{6}\\x+y=\sqrt{3}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{6}-1\left(khongthoaman\right)\\y=\sqrt{3}-2\left(khongthoaman\right)\end{cases}}}\)

Vậy không có cặp x, y nào thỏa mãn đề bài

12 tháng 7 2017

Sai đề rùi bạn ơi phải là: \(x^2+2xy+y^2=7\)chứ !!!

23 tháng 2 2022

9+10+11=30

23 tháng 2 2022

làm bừa hả bạn

9 tháng 7 2017

ta có :

 a) \(\left(x+y\right)^2-y^2=x.\left(x+2y\right)\)

\(\Leftrightarrow x^2+2xy+y^2-y^2=x^2+2xy\)

b) \(\left(x^2+y^2\right)^2-\left(2xy\right)^2=\left(x+y\right)^2.\left(x-y\right)^2\)

\(\Leftrightarrow x^4+2x^2y^2+y^4-4x^2y^2=\left(x^2+2xy+y^2\right)\left(x^2-2xy+y^2\right)\)

\(\Leftrightarrow x^4-2x^2y^2+y^4=x^4-2x^3y+x^2y^2+2x^3y-4x^2y^2+2xy^3+x^2y^2-2xy^3+y^4\)

\(\Leftrightarrow x^4-2x^2y^2+y^4=x^4-2x^2y^2+y^4\)

c) \(\left(x+y\right)^3=x\left(x-3y\right)^2+y\left(y-3x\right)^2\)

\(\Leftrightarrow x^3+3x^2y+3xy^2+y^3=x\left(x^2-6xy+9y^2\right)+y\left(y^2-6xy+9x^2\right)\)

\(\Leftrightarrow x^3+3x^2y+3xy^2+y^3=x^3-6x^2y+9xy^2+y^3-6xy^2+9x^2y\)

\(\Leftrightarrow x^3+3x^2y+3xy^2+y^3=x^3+3x^2y+3xy^2+y^3\)

tk mình nhé bạn mình mất nhìu công lắm mới hoàn thành xong đó .... đúng thì tk nhé mơnnnn

Xin lỗi mink mới có lớp 5 thôi ak nên mik ko thể giúp bn , xin lỗi bn nha ! 

=>x^2+4xy+4y^2+y^2-2y<0

=>y^2-2y<0

=>0<y<2

=>y=1 và \(x\in Z\)

20 tháng 12 2015

\(25-y^2=8\left(x-2013\right)^2\)

\(\Leftrightarrow\)  \(8\left(x-2013\right)^2+y^2=25\)  \(\left(\text{ *}\right)\)

Vì  \(y^2\ge0\)  nên  \(\left(x-2013\right)^2\le\frac{25}{8}\)

Do đó:  \(\left(x-2013\right)^2=0\)  hoặc  \(\left(x-2013\right)^2=1\)

+)  Thay   \(\left(x-2013\right)^2=1\)  vào  \(\left(\text{ *}\right)\) , ta có:  \(y^2=17\)  (loại)

+)  Thay   \(\left(x-2013\right)^2=0\)  vào  \(\left(\text{ *}\right)\), ta có:  \(y^2=25\)   \(\Leftrightarrow\)   \(y=5\)  hoặc  \(y=-5\)

Vậy,  \(x=2013\)  ;   \(y=5\)  hoặc  \(y=-5\)

 

18 tháng 8 2017

Bài 1 :

a, \(A=x\left(x-6\right)+10\)

=x^2 - 6x + 10

=x^2 - 2.3x+9+1

=(x-3)^2 +1 >0 Với mọi x dương

18 tháng 8 2017

Cảm ơn bạn Vũ Anh Quân ;) ;) ;)