K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

=>x^2+4xy+4y^2+y^2-2y<0

=>y^2-2y<0

=>0<y<2

=>y=1 và \(x\in Z\)

30 tháng 6 2019

x2 + 5y2 < 4xy + 2y

\(\Leftrightarrow\) x2 + 5y2 - 4xy - 2y < 0

\(\Leftrightarrow\) ( x2 - 4xy + 4y2 ) + ( y2 - 2y) < 0

\(\Leftrightarrow\)( x - 2y )2 + y.( y - 2 ) < 0

\(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-2y\right)^2< 0\\y-2< 0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x-2y< 0\\y< 2\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x< 4\\y< 2\end{cases}}\)

Vậy x < 4 , y < 2 thì x2 + 5y2 < 4xy + 2y

22 tháng 6 2015

1. x2-4xy + 5y2 = 100\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+y^2=100\)

\(\Leftrightarrow\left(x-2y\right)^2+y^2=0+10^2=6^2+8^2\)\(\Leftrightarrow\int^{x-2y=0}_{y=10}\)

hoặc \(\int^{x-2y=10}_{y=0}\)      hoặc \(\int^{x-2y=6}_{y=8}\)  hoặc \(\int^{x-2y=8}_{y=6}\)

từ đó ta tìm được (x;y)= ( 20;10);(10;0) ; ( 24;6) ; ( 20; 6)

2. 4x2 + 2y- 4xy + 20x - 6y + 29 = 0 \(\Leftrightarrow4x^2-4x\left(y-5\right)+\left(y^2-10y+25\right)+\left(y^2+4y+4\right)=0\)

\(\Leftrightarrow4x^2-4x\left(y-5\right)+\left(y-5\right)^2+\left(y+2\right)^2=0\)

\(\Leftrightarrow\left(2x-y+5\right)^2+\left(y+2\right)^2=0\)

\(\Leftrightarrow\int^{2x-y+5=0}_{y+2=0}\Leftrightarrow\int^{x=\frac{-7}{2}}_{y=-2}\) loại vì x, y nguyên

vậy phương trình đã cho không có nghiệm nguyên

 

23 tháng 11 2021

Answer:

3.

\(x^2+2y^2+2xy+7x+7y+10=0\)

\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)

\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)

\(\Rightarrow4S^2+28S+4y^2+40=0\)

\(\Rightarrow4S^2+28S+49+4y^2-9=0\)

\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)

\(\Rightarrow-3\le2S+7\le3\)

\(\Rightarrow-10\le2S\le-4\)

\(\Rightarrow-5\le S\le-2\left(2\right)\)

Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)

Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)

Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)

29 tháng 11 2018

\(x^2+3y^2=4xy\Leftrightarrow x^2-xy+3y^2-3xy=0\)

\(\Leftrightarrow x\left(x-y\right)-3y\left(x-y\right)=0\Leftrightarrow\left(x-y\right)\left(x-3y\right)=0\)

Do x>y>0 => x-y>0 => \(x-3y=0\Leftrightarrow x=3y\) Thay vào A

\(\Rightarrow A=\frac{2.3y+5y}{3y-2y}=\frac{11y}{y}=11\)

18 tháng 3 2021

\(x^2+5y^2-4xy-5y+4=0\)

\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2-4y+4\right)-y=0\)

\(\Leftrightarrow\left(x-2y\right)^2+\left(y-2\right)^2-y=0\)

.....Làm nốt

2 tháng 12 2019

\(x^2+5y^2+2y-4xy-3=0.\)

\(\Rightarrow x^2-4xy+4y^2+y^2+2y-3=0\)

\(\Rightarrow\left(x-2y\right)^2+\left(y+1\right)^2-4=0\)

Vậy cặp số x,y nhỏ nhất thỏa mãn là \(\hept{\begin{cases}x-2y=0\\y+1=0\end{cases}\Rightarrow\hept{\begin{cases}x-2y=0\\y=-1\end{cases}\Rightarrow}\hept{\begin{cases}x+2=0\\y=-1\end{cases}}}\)

\(\Rightarrow x=-2;y=-1\)

\(x^2+5y^2+2y-4xy-3=0\)

=> \(\left(x^2-4xy+4y^2\right)+\left(y^2+2y+1\right)-4=0\)

=> \(\left(x-2y\right)^2+\left(y+1\right)^2-2^2=0\)

=> \(\left(x-2y\right)^2+\left(y+1-2\right)\left(y+1+2\right)=0\)

=> \(\left(x-2y\right)^2+\left(y-1\right)\left(y+3\right)=0\)

Mà   \(\left(x-2y\right)^2 \ge 0 \forall x\) 

=> \(\left(y-1\right)\left(y+3\right)\le0\)   Mặt khác \(y-1 < y+3 \)

=> \(\hept{\begin{cases}y-1\le0\\y+3\ge0\end{cases}}\)=> \(-3\le y\le1\)  mà y nhỏ nhất 

=> \(y=-3\)

Thay vào biểu thức, ta có \(\left(x+6\right)^2+\left(-3-1\right)\left(-3+3\right)=0\) => \(\left(x+6\right)^2=0\)  => \(x+6=0\) => \(x=-6\)

    Vậy x=-6 , y=-3

a, x2+5y2+2y-4xy-3=0

\(\Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=4\)

Nếu \(y< -3\Rightarrow y+1< -2\Rightarrow\left(y+1\right)^2>4\Rightarrow VT>VP\)(vô lí)

\(\Rightarrow y\ge-3\Rightarrow y_{min}=-3\)

lúc đó \(\left(x+6\right)^2+4=4\Rightarrow x=-6\)

Vậy.................

5 tháng 3 2020

a) \(x^2+5y^2+2y-4xy-3=0\)

\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2+2y+1\right)-4=0\)

\(\Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=4\)

Ta thấy : \(4=0+4\) là tổng hai số chính phương

Thử các giá trị \(\orbr{\begin{cases}\left(y+1\right)^2=0\\\left(y+1\right)^2=4\end{cases}}\)

Ta thấy : \(y=-3\) đạt giá trị nhỏ nhất.

Khi đó : \(x^2+5.\left(-3\right)^2+2\left(-3\right)-4x\left(-3\right)-3=0\)

\(\Leftrightarrow x=-6\)

Vậy : \(\left(x,y\right)=\left(-6,-3\right)\) với y nhỏ nhất thỏa mãn đề.

P/s : Không chắc lắm ....

21 tháng 12 2018

\(x^2-4xy+5y^2+6x-10y+10=0\)

\(x^2-2x\left(2y-3\right)+5y^2-10y+10=0\)

\(x^2-2x\left(2y-3\right)+\left(4y^2-12x+9\right)+\left(y^2+2x+1\right)=0\)

\(x^2-2x\left(2y-3\right)+\left(2y-3\right)^2+\left(y+1\right)^2=0\)

\(\left(x-2y+3\right)^2+\left(y+1\right)^2=0\)

Ta có: \(\hept{\begin{cases}\left(x-2y+3\right)^2\ge0\forall x;y\\\left(y+1\right)^2\ge0\forall y\end{cases}}\)\(\Rightarrow\left(x-2y+3\right)^2+\left(y+1\right)^2\ge0\forall x;y\)

Mà \(\left(x-2y+3\right)^2+\left(y+1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(x-2y+3\right)^2=0\\\left(y+1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-2y+3=0\\y+1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x-2y+3=0\\y=-1\end{cases}\Leftrightarrow}\hept{\begin{cases}x+2+3=0\\y=-1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-5\\y=-1\end{cases}}}\)Vậy \(\hept{\begin{cases}x=-5\\y=-1\end{cases}}\)

Tham khảo nhé~

15 tháng 5 2019

Sao anh kudo không tách thẳng như vầy luôn cho nhanh?(nhanh hơn đúng 1 dòng ở phần phân tích thôi:v)

\(A=x^2-4xy+5y^2+6x-10y+10=0\)

\(\Leftrightarrow\left(x^2-2.x.2y+4y^2\right)+\left(6x-12y\right)+9+\left(y^2+2y+1\right)=0\)

\(\Leftrightarrow\left[\left(x-2y\right)^2+2.\left(x-2y\right).3+3^2\right]+\left(y+1\right)^2=0\)

\(\Leftrightarrow\left(x-2y+3\right)^2+\left(y+1\right)^2=0\)

Đến đây ez rồi!