Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo tại link sau:
Câu hỏi của trần trác tuyền - Toán lớp 9 | Học trực tuyến
Lời giải:
Ta thấy: $2xy-1\vdots (x-1)(y-1)$
\(\Rightarrow \left\{\begin{matrix} 2xy-1\vdots x-1\\ 2xy-1\vdots y-1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 2y(x-1)+2y-1\vdots x-1\\ 2x(y-1)+2x-1\vdots y-1\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} 2y-1\vdots x-1\\ 2x-1\vdots y-1\end{matrix}\right.\)
Nếu $x=y$ thì $2x-1\vdots x-1\Rightarrow 2(x-1)+1\vdots x-1$
$\Rightarrow 1\vdots x-1\Rightarrow x-1=\pm 1\Rightarrow x=0; 2$. Mà $x$ nguyên dương nên $x=2\Rightarrow y=2$
Nếu $x>y$: Vì $x>y\geq 1$ nên $x\geq 2$.
Ta thấy: $2y-1-3(x-1)=2(y-x)+(2-x)< 0\Rightarrow 2y-1< 3(x-1)$
Mà $2y-1\vdots x-1$ và $2y-1$ lẻ nên $2y-1=x-1$
$\Rightarrow 2x-1=2(x-1)+1=2(2y-1)+1\vdots y-1$
$\Leftrightarrow 4(y-1)+3\vdots y-1$
$\Rightarrow 3\vdots y-1\Rightarrow y-1\in\left\{\pm 1;\pm 3\right\}$
$\Rightarrow $y\in\left\{2; 4\right\}$
$\Rightarrow x=4; x=8$ (tương ứng)
Nếu $x< y$: Hoàn toàn tương tự
Vậy..........
2xy-3x-y=1
<=>y(2x-1)=3x+1
=>y=(3x+1)/(2x-1)
để y nguyên thì 3x+1 phải chia hết cho 2x-1
Mình viết tiếp bài bạn Tuấn.
\(2xy-3x-y=1\Leftrightarrow2xy-y=3x+1\Leftrightarrow\left(2x-1\right)y=3x+1\)vì x nguyên nên 2x-1 khác 0.
\(\Rightarrow y=\frac{3x+1}{2x-1}\)(1)
Để y nguyên thì 2y cũng nguyên, do đó (1) trở thành: \(2y=\frac{6x+2}{2x-1}=\frac{6x-3+5}{2x-1}=3+\frac{5}{2x-1}\)
Để 2y nguyên thì 2x-1 là ước của 5.
- 2x-1 = -5 => x=-2 => y = 1
- 2x-1 = -1=> x=0 => y = -1.
- 2x-1 = 1 => x=1 => y = 4.
- 2x-1 = 5 => x = 3 => y = 2.
Vậy có 4 cặp (x;y) TM đề bài là (-2;1); (0;-1); (1;4); (3;2).