K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2017

k mk đi làm onnnnnnnnnnnnnnnnnn, thank you very much

9 tháng 4 2017

Từ 3x = 5y => x/5 = y/3

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

 x/5 = y/3 = x- y / 5-3 = 32/2 = 16

Từ x/5 = 16 => x = 80

y/3 = 16 = > y = 48

Vậy x = 80, y = 48

Bài này không phải là chia thành hai câu a, b như đề của bạn đâu nhé. nếu như đề của bạn thỳ có vô vạn số

22 tháng 10 2021

a) Áp dụng tính chất dãy tỉ số bằng nhau:

    \(\dfrac{x}{5}=\dfrac{y}{6}=\dfrac{x+y}{5+6}=\dfrac{44}{11}=4\)

=> x = 4.5 = 20.

=> y = 4.6 = 24.

b) Áp dụng tính chất dãy tỉ số bằng nhau:

    \(\dfrac{x}{5}=\dfrac{y}{6}=\dfrac{3x-y}{15-6}=\dfrac{63}{9}=7\)

=> x = 7.5 = 35.

=> y = 7.6 = 42.

c) Áp dụng tính chất dãy tỉ số bằng nhau:

      \(\dfrac{x}{5}=\dfrac{y}{6}=\dfrac{x.y}{5.6}=\dfrac{270}{30}=9\)

=> x = 9.5 = 45.

=> y = 9.6 = 54.

d) Áp dụng tính chất dãy tỉ số bằng nhau:

    \(\dfrac{x}{5}=\dfrac{y}{6}=\dfrac{x.y}{5.6}=\dfrac{120}{30}=4\)

=> x = 4.5 = 20.

=> y = 4.6 = 24.

22 tháng 10 2021

câu c,d ở bạn trên làm sai rồi nhé

\(c,\) Đặt \(\dfrac{x}{5}=\dfrac{y}{6}=k\Rightarrow x=5k;y=6k\)

\(xy=270\Rightarrow30k^2=270\\ \Rightarrow k^2=9\Rightarrow\left[{}\begin{matrix}k=3\\k=-3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=15;y=18\\x=-15;y=-18\end{matrix}\right.\)

\(d,\) Đặt \(\dfrac{x}{5}=\dfrac{y}{6}=k\Rightarrow x=5k;y=6k\)

\(xy=120\Rightarrow30k^2=120\\ \Rightarrow k^2=4\Rightarrow\left[{}\begin{matrix}k=2\\k=-2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=10;y=12\\x=-10;y=-12\end{matrix}\right.\)

a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+2y-3z}{2+2\cdot3-3\cdot4}=\dfrac{-20}{-4}=5\)

Do đó: x=10; y=15; z=20

b: \(\left(x,y\right)\in\left\{\left(1;10\right);\left(10;1\right);\left(2;5\right);\left(5;2\right);\left(-1;-10\right);\left(-10;-1\right);\left(-2;-5\right);\left(-5;-2\right)\right\}\)

22 tháng 10 2021

a. Theo t/c của dãy tỉ số bằng nhau ta có:

x+y+z/2+3+5=40/10=4

=>x=4.2=8

=>y=4.3=12

=>z=4.5=20

 

 

22 tháng 10 2021

b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-3y+2z}{2-3\cdot3+2\cdot5}=\dfrac{9}{-15}=\dfrac{-3}{5}\)

Do đó: \(\left\{{}\begin{matrix}x=-\dfrac{6}{5}\\y=\dfrac{-9}{5}\\z=-3\end{matrix}\right.\)

a: 3x=7y

=>x/7=y/3=(x-y)/(7-3)=-16/4=-4

=>x=-28; y=-12

b: x/6=y/5

=>x/6=2y/10=(x+2y)/(6+10)=20/16=5/4

=>x=30/4=15/2; y=25/4

c: Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{x}{2}=\dfrac{y}{-3}=\dfrac{z}{5}=\dfrac{2x+3y+5z}{2\cdot2+3\cdot\left(-3\right)+5\cdot5}=\dfrac{6}{20}=\dfrac{3}{10}\)

=>x=3/5; y=-9/10; z=3/2

d: x/2=y/3

=>x/8=y/12

y/4=z/5

=>y/12=z/15

=>x/8=y/12=z/15

Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x+y-z}{8+12-15}=\dfrac{10}{5}=2\)

=>x=16; y=24; z=30

14 tháng 10 2021

b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}=\dfrac{-3x-4y+5z+3-12-25}{-3\cdot2-4\cdot4+5\cdot6}=\dfrac{16}{8}=2\)

Do đó: x=5; y=5; z=17

14 tháng 10 2021

\(a,\dfrac{x^3}{8}=\dfrac{y^3}{27}=\dfrac{z^3}{64}\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{16}\)

Áp dụng t/c dtsbn:

\(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{16}=\dfrac{x^2+2y^2-3z^2}{4+18-48}=\dfrac{-650}{-26}=25\\ \Rightarrow\left\{{}\begin{matrix}x^2=100\\y^2=225\\z^2=400\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\pm10\\y=\pm15\\z=\pm20\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)\) có giá trị là hoán vị của \(\left(\pm10;\pm15;\pm20\right)\)

1 tháng 6 2021

\(a.\)

\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{-14}{7}=-2\)

\(\Rightarrow\left\{{}\begin{matrix}x=\left(-2\right)\cdot2=-4\\y=\left(-2\right)\cdot5=-10\end{matrix}\right.\)

\(b.\)

\(\dfrac{x}{7}=\dfrac{y}{5}=\dfrac{x-y}{7-5}=\dfrac{8}{2}=4\)

\(\Rightarrow\left\{{}\begin{matrix}x=4\cdot7=28\\y=5\cdot4=20\end{matrix}\right.\)

18 tháng 10 2021

a, Áp dụng t/c dtsbn:

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{x+y}{3+5}=\dfrac{16}{8}=2\\ \Rightarrow\left\{{}\begin{matrix}x=6\\y=10\end{matrix}\right.\\ b,x:2=y:\left(-5\right)\Rightarrow\dfrac{x}{2}=\dfrac{y}{-5}\)

Áp dụng t/c dtsbn:

\(\dfrac{x}{2}=\dfrac{y}{-5}=\dfrac{x-y}{2-\left(-5\right)}=\dfrac{-7}{7}=-1\\ \Rightarrow\left\{{}\begin{matrix}x=-2\\y=5\end{matrix}\right.\)

2:

a: A(x)=0

=>5x-10-2x-6=0

=>3x-16=0

=>x=16/3

b: B(x)=0

=>5x^2-125=0

=>x^2-25=0

=>x=5 hoặc x=-5

c: C(x)=0

=>2x^2-x-3=0

=>2x^2-3x+2x-3=0

=>(2x-3)(x+1)=0

=>x=3/2 hoặc x=-1

18 tháng 3 2023

a) Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{z}{-3}=\dfrac{x.y.z}{5.2.-3}=\dfrac{240}{-30}=-8\)

\(\Rightarrow\dfrac{x}{5}=-8\Rightarrow x=-8.5=-40\)

\(\Rightarrow\dfrac{y}{2}=-8\Rightarrow y=-8.2=-16\)

\(\Rightarrow\dfrac{z}{-3}=-8\Rightarrow z=-8.-3=24\)

Vậy \(x=--40;y=-16\) và \(z=24\) 

b) Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{2}=\dfrac{x^3-y^3+z^3}{3^3-4^3+2^3}=\dfrac{-29}{-29}=1\)

\(\Rightarrow\dfrac{x}{3}=1\Rightarrow x=3.1=3\)

\(\Rightarrow\dfrac{y}{4}=1\Rightarrow y=1.4=4\)

\(\Rightarrow\dfrac{z}{2}=1\Rightarrow z=1.2=2\)

Vậy \(x=3;y=4\) và \(z=2\) 

27 tháng 12 2021

Ta có

x + y = 32

=> 3x + 3y = 96

3x = 5y

=> 5y + 3y = 96

=> 8y = 96

=> y = 12

Mà ta có x + y = 32

=> x + 12 = 32

=> x = 32 - 12 = 20

Kết luận

Ta có x là 20 và y là 12

 

27 tháng 12 2021

X=20

Y=12