K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2018

\(2x+3y=0\)

\(\Leftrightarrow2x=-3y\)

\(\Rightarrow\frac{x}{-3}=\frac{y}{2}\Rightarrow\frac{-x}{3}=\frac{y}{2}\)

Ta có : \(\left(\frac{-x}{3}\right)^2=\frac{-x}{3}\cdot\frac{-x}{3}=\frac{-x}{3}\cdot\frac{y}{2}=\frac{-xy}{3\cdot2}=\frac{54}{6}=9\)

\(\Rightarrow\left(\frac{-x}{3}\right)=\left(\pm3\right)^2\)

\(\Rightarrow\orbr{\begin{cases}\frac{-x}{3}=\frac{y}{2}=-3\\\frac{-x}{3}=\frac{y}{2}=3\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=9;y=-6\\x=-9;y=6\end{cases}}\)

Vậy ......

20 tháng 10 2018

hoàng lớp 6a3  hkyuhbgj ta ku da

20 tháng 10 2018

Liên quan

1 tháng 11 2018

\(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2};5y=6z\Rightarrow\frac{y}{6}=\frac{z}{5}\)

\(\Rightarrow\frac{x}{9}=\frac{y}{6}=\frac{z}{10}\)

\(\Rightarrow\frac{x}{9}=\frac{y}{6}=\frac{z}{10}=\frac{x+y-z}{9+6-10}=-\frac{20}{5}=-4\)

\(\Rightarrow x=-36;y=-24;z=-40\)

1 tháng 11 2018

ta có: 2x=3y => x=\(\frac{3y}{2}\)

           5y=6z => z=\(\frac{5y}{6}\)Thay x và z vào biểu thức x+y=z-20 ta được:

\(\frac{3y}{2}\)+y =\(\frac{5y}{6}\)-20

\(\frac{3y.3}{2.3}\)+\(\frac{6y}{6}\)-\(\frac{5y}{6}\)=-20

\(\frac{9y+6y-5y}{6}\)=-20

\(\frac{10y}{6}\)=-20

10y=-20.6

10y= -120

y=-12 . =>x=\(\frac{3.\left(-12\right)}{2}\)=-18 ,z=-10

17 tháng 12 2017

Ta có:\(\hept{\begin{cases}\left(y-3\right)^{2014}\ge0\\\left|2x+1\right|^{2015}\ge0\end{cases}}\)\(\Rightarrow\left(y-3\right)^{2014}+\left|2x+1\right|^{2015}\ge0\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(y-3\right)^{2014}=0\\\left|2x+1\right|^{2015}=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}y-3=0\\2x+1=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}y=3\\x=-\frac{1}{2}\end{cases}}\)

17 tháng 12 2017

Ta có: (y-3)2014 \(\ge\)0 và |2x+1|2015 \(\ge\)0

Mà (y-3)2014 + |2x+1|2015 = 0 => (y-3)2014 = 0 và |2x+1|2015 = 0

=> y - 3 = 0 và 2x + 1 = 0

=> y = 3 và 2x = -1

=> y = 3 và x = -1/2.

Vậy y = 3 và x = -1/2.

30 tháng 11 2018

Sao bạn lại chọn là Ngữ văn -.- thôi giải cho nè

C1:7x=4y=> \(x=\frac{4y}{7}\)

=> \(\frac{4y^2}{7}=112\)=> \(y^2=196\) => \(y=\pm14\)=> \(x=\pm8\)

C2: Làm ngược lại, rút y sau đó => x . Tìm đc x lại tìm y.

C3: xy=112 => \(x=\frac{112}{y}\)

=> \(7.\frac{112}{y}=4y\)=> \(\frac{784}{y}=4y\)=>\(784=4y^2\)=>\(y=\pm14\)=> \(x=\pm8\)

C4: Làm ngược lại vs C3 

30 tháng 11 2018

C1 \(7x=4y\Rightarrow\frac{x}{4}=\frac{y}{7}\)

\(\Rightarrow\left(\frac{x}{4}\right)^2=\frac{xy}{4\cdot7}\)

\(\Rightarrow\frac{x^2}{16}=\frac{112}{28}=4\)

\(\Rightarrow x^2=64\)

\(\Rightarrow x=8,x=-8\)

thay x vào 7x=4y rồi tính thepo 2 trường hợp nhé bạn

18 tháng 2 2020

Ta có :\(\left(2x-5\right)^{2000}\) \(\geq\) \(0\) \(;\) \(\left(3y+4\right)^{2002}\) \(\geq\) \(0\)

\(\implies\)  \(\left(2x-5\right)^{2000}+\left(3y+4\right)^{2002}\) \(\geq\)  \(0\) (1)

  Mà theo đầu bài ra ta có: \(\left(2x-5\right)^{2000}+\left(3y+4\right)^{2002}\) <\(0\) (2)

Từ (1);(2)  \(\implies\)  Không có số nguyên  x;y nào nhỏ hơn hoặc bằng 0 thỏa mãn ycbt

19 tháng 2 2020

thank bn iu

20 tháng 11 2018

Nhận xét: Vai trò của x; y như nhau nên giả sử x\(\le\)y.

4x + 1 chia hết cho y => 4x + 1 = ky (k\(\in\)N*)

Có 4x + 1\(\le\)4x + 1 => k.y \(\le\)4x + 1. => (k - 1).y + y \(\le\)4x + 1

Vì y là số tự nhiên khác 0 => 1\(\le\)y => (k - 1).y + y \(\le\)(k - 1)y + y

=> k - 1 \(\le\)4 => k - 1 = {0; 1; 2; 3; 4; 5} => k = {1; 2; 3; 4; 5}

+) Với k = 1 => 4x + 1 = y => 4y + 1 = 4.(4x + 1) + 1 = 16x + 5 chia hết cho x => 5 chia hết cho x => x = 1 hoặc x = 5

=> y = 5 hoặc y = 21 (chọn)

+) Với k = 2 => 4x + 1 = 2y => 4y + 1 = 8x + 3 chia hết cho x => 3 chia hết cho x => x = 1 hoặc x = 3

=> y = \(\frac{5}{2}\) hoặc y = \(\frac{13}{2}\)(loại)

+) Với k = 3 => 4x + 1 = 3y => 4y + 1 = \(\frac{16x+7}{3}\) chia hết cho x => 16x + 7 = 3mx (m là số tự nhiên)

=> (3m - 16)x = 7 => x là ước của 7 => x = 7 hoặc x = 1 => y = \(\frac{29}{3}\)hoặc y = \(\frac{5}{3}\)(loại)

+) Với k = 4 => 4x + 1 = 4y (loại, vì 4x + 1 không chia hết cho 4 mà 4y chia hết cho 4)

+) Với k = 5 => 4x + 1 = 5y => 4y + 1 = \(\frac{16x+9}{5}\)chia hết cho x => 16x + 9 = 5ny (n là số tự nhiên)

=> (5n = 16)x = 9 => x là ước của 9 => x = {1; 3; 9} => y = 1 hoặc y = \(\frac{13}{5}\)hoặc y = \(\frac{37}{5}\)(loại)

Từ các trường hợp trên các cặp số (x; y) thỏa mãn là: (1; 1); (1; 5); (5; 21); (5; 1) và (21; 5).