K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2016

a/ Vì /2x-4/ lớn hơn hoặc bằng 0

và /3x+2/ lớn hơn hoặc bằng 0

Mà /2x-4/+/3y+2/=0

=> /2x-4/=0 và /3y+2/=0

=> 2x-4 =0 và 3y+2=0

=>2x=4 và 3y=-2

=>x=2 và y=-2/3

b, tương tự: x=-4 và y=1/3

c, tương tự: x=1/2 và y=1/2

Bài 2: 

a: =>x=0 hoặc x=-3

b: =>x-2=0 hoặc 5-x=0

=>x=2 hoặc x=5

c: =>x-1=0

hay x=1

16 tháng 2 2021

a) Có \(\left|x-3y\right|^5\ge0\);\(\left|y+4\right|\ge0\)

\(\rightarrow\left|x-3y\right|^5+\left|y+4\right|\ge0\)

mà \(\left|x-3y\right|^5+\left|y+4\right|=0\)

\(\rightarrow\left\{{}\begin{matrix}\left|x-3y\right|^5=0\\\left|y+4\right|=0\end{matrix}\right.\)

\(\rightarrow\left\{{}\begin{matrix}x=3y\\y=-4\end{matrix}\right.\)

\(\rightarrow\left\{{}\begin{matrix}x=-12\\y=-4\end{matrix}\right.\)

 

b) Tương tự câu a, ta có:

\(\left\{{}\begin{matrix}\left|x-y-5\right|=0\\\left(y-3\right)^4=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=y+5\\y=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=3\end{matrix}\right.\)

 

c. Tương tự, ta có:

\(\left\{{}\begin{matrix}\left|x+3y-1\right|=0\\\left|y+2\right|=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1-3y\\y=-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=-2\end{matrix}\right.\)

16 tháng 2 2021

a. \(\left|x-3y\right|^5\ge0,\left|y+4\right|\ge0\Rightarrow\left|x-3y\right|^5+\left|y+4\right|\ge0\) \(\Rightarrow VT\ge VP\)

Dấu bằng xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left|x-3y\right|^5=0\\\left|y+4\right|=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3y\\y=-4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-12\\y=-4\end{matrix}\right.\) Vậy...

b. \(\left|x-y-5\right|\ge0,\left(y-3\right)^4\ge0\Rightarrow\left|x-y-5\right|+\left(y-3\right)^4\ge0\) \(\Rightarrow VT\ge VP\)

Dấu bằng xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left|x-y-5\right|=0\\\left(y-3\right)^4=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=y+5\\y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=3\end{matrix}\right.\) Vậy ...

c. \(\left|x+3y-1\right|\ge0,3\cdot\left|y+2\right|\ge0\Rightarrow\left|x+3y-1\right|+3\left|y+2\right|\ge0\) \(\Rightarrow VT\ge VP\) Dấu bằng xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left|x+3y-1\right|=0\\3\left|y+2\right|=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1-3y\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1-\left(-2\right)\cdot3=7\\y=-2\end{matrix}\right.\) Vậy...

29 tháng 8 2017

bài 1

a)\(\frac{x}{y}=\frac{7}{3}\Rightarrow\frac{x}{7}=\frac{y}{3}\)
\(\Rightarrow\frac{5x}{5.7}=\frac{2y}{2.3}=\frac{5x-2y}{35-6}=\frac{87}{29}=3\)
\(\Rightarrow x=3.7=21;y=3.3=9\)

Bài dưới tướng tự nhé

5 tháng 11 2015

\(\frac{x-2}{5}=\frac{y-4}{3}=\frac{z+5}{2}=\frac{2x-4}{10}=\frac{3y-12}{9}=\frac{z+5}{2}\)

áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{2x-4}{10}=\frac{3y-12}{9}=\frac{z+5}{2}=\frac{2x-3y+z-4+12+5}{10-9+2}=\frac{2x-3y+z+13}{10-9+2}\frac{33+13}{3}=12\)

Vậy \(\frac{x-2}{5}=12\)            ;\(\frac{y-4}{3}=12\) ;               ;                                                                                    x-2=12.5                                  \(y-4=12.3\)

       x-2=60                         \(y=36+4\)

        x=58                         \(y=40\)

bạn tự làm tiếp nha

10 tháng 9 2017

ngu như con lợn

11 tháng 9 2017

bạn nói mình ngu sao bạn ko giải đi

Bài 1: 

a: \(A=-\left|x-\dfrac{4}{9}\right|+\dfrac{7}{33}\le\dfrac{7}{33}\forall x\)

Dấu '=' xảy ra khi x=4/9

b: \(B=-\left|x+\dfrac{11}{9}\right|+\dfrac{101}{90}\le\dfrac{101}{90}\forall x\)

Dấu '=' xảy ra khi x=-11/9

Bài 2:

=>2x-8/33=0 và 3y+7/45=0

=>2x=8/33 và 3y=-7/45

=>x=8/66=4/33 và y=-7/135

24 tháng 8 2021

a) \(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\left(\dfrac{x}{2}\right)^2=\left(\dfrac{y}{3}\right)^2=\dfrac{x.y}{2.3}=\dfrac{54}{6}=9\)

\(\Rightarrow\left\{{}\begin{matrix}x^2=36\\y^2=81\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\pm6\\y=\pm9\end{matrix}\right.\)

b) \(\dfrac{x}{5}=\dfrac{y}{3}\Rightarrow\left(\dfrac{x}{5}\right)^2=\left(\dfrac{y}{3}\right)^2=\dfrac{x^2-y^2}{5^2-3^2}=\dfrac{4}{16}=\dfrac{1}{4}\)

\(\Rightarrow\left\{{}\begin{matrix}x^2=\dfrac{25}{4}\\y^2=\dfrac{9}{4}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\pm\dfrac{5}{2}\\y=\pm\dfrac{3}{2}\end{matrix}\right.\)

 

c: Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}\)

nên \(\dfrac{x}{10}=\dfrac{y}{15}\)

Ta có: \(\dfrac{y}{5}=\dfrac{z}{7}\)

nên \(\dfrac{y}{15}=\dfrac{z}{21}\)

mà \(\dfrac{x}{10}=\dfrac{y}{15}\)

nên \(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{92}{46}=2\)

Do đó: x=20; y=30; z=42

27 tháng 2 2020

3y2=12-\(|x-2|\)suy ra 3y2 + /x-2/ =12

Vì /x-2/ \(\ge0;\forall x\); y2\(\ge0;\forall y\)

mà x, y nguyên

TH1: y2=4 và /x-2/ = 0

suy ra y thuộc {2; -2} và x=2

TH2: 

y2=1 và /x-2/ = 9

suy ra y thuộc {1; -1} và x thuộc {11; -7}

TH3: 

y2=0 và /x-2/ = 12

suy ra y =0 và x thuộc {14; -10}

Tự kết luận nhé