K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2018

Ta có : \(\sqrt{17}>\sqrt{16}\) , \(\sqrt{26}>\sqrt{25}\) 

=>\(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10\)

mà \(\sqrt{99}< \sqrt{100}=10\) 

=> a > b

19 tháng 3 2018

\(a)\)  Ta có : \(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{x}-1+2}{\sqrt{x}-1}=\frac{\sqrt{x}-1}{\sqrt{x}-1}+\frac{2}{\sqrt{x}-1}=1+\frac{2}{\sqrt{x}-1}\)

Thay \(x=\frac{16}{9}\) vào \(A=1+\frac{2}{\sqrt{x}-1}\) ta được : 

\(A=1+\frac{2}{\sqrt{\frac{16}{9}}-1}=1+\frac{2}{\sqrt{\left(\frac{4}{3}\right)^2}-1}=1+\frac{2}{\frac{4}{3}-1}=1+\frac{2}{\frac{1}{3}}=1+6=7\)

Vậy giá trị của \(A=7\) khi \(x=\frac{16}{9}\)

Thay \(x=\frac{25}{9}\) vào \(A=1+\frac{2}{\sqrt{x}-1}\) ta được : 

\(A=1+\frac{2}{\sqrt{\frac{25}{9}}-1}=1+\frac{2}{\sqrt{\left(\frac{5}{3}\right)^2}-1}=1+\frac{2}{\frac{5}{3}-1}=1+\frac{2}{\frac{2}{3}}=1+3=4\)

Vậy giá trị của \(A=4\) khi \(x=\frac{25}{9}\)

\(b)\) Để \(A=5\) thì \(1+\frac{2}{\sqrt{x}-1}=5\)

\(\Rightarrow\)\(\frac{2}{\sqrt{x}-1}=4\)

\(\Rightarrow\)\(\frac{1}{\sqrt{x}-1}=\frac{1}{2}\)

\(\Rightarrow\)\(\sqrt{x}-1=2\)

\(\Rightarrow\)\(\sqrt{x}=3\)

\(\Rightarrow\)\(x=3^2\)

\(\Rightarrow\)\(x=9\)

Vậy để \(A=5\) thì \(x=9\)

\(c)\) Để \(A\inℤ\) thì \(1+\frac{2}{\sqrt{x}-1}\inℤ\)

\(\Rightarrow\)\(2⋮\left(\sqrt{x}-1\right)\)

\(\Rightarrow\)\(\left(\sqrt{x}-1\right)\inƯ\left(2\right)\)

Mà \(Ư\left(2\right)=\left\{1;-1;2;-2\right\}\)

Suy ra : 

\(\sqrt{x}-1\)\(1\)\(-1\)\(2\)\(-2\)
\(x\)\(4\)\(0\)\(9\)\(1\)

Vậy để \(A\inℤ\) thì \(x\in\left\{0;1;4;9\right\}\)

Chúc bạn học tốt ~ 

3 tháng 4 2017

Trong toán học, phương trình là một mệnh đề chứa biến có dạng:

{\displaystyle f(x_{1},x_{2},...)=g(x_{1},x_{2},...)\qquad (1)}

{\displaystyle h(x_{1},x_{2},...)\equiv f(x_{1},x_{2},...)-g(x_{1},x_{2},...)\qquad (3)}

{\displaystyle h(x_{1},x_{2},...)=0\qquad (2)}

Trong đó {\displaystyle x_{1},x_{2},...} được gọi là các biến số của phương trình.

Có nhiều cách để phân loại phương trình. Phân loại phương trình theo số ẩn ta có: phương trình một ẩn, phương trình hai ẩn.... Phân loại phương trình theo các phép toán trong phương trình ta có phương trình vô tỷ, phương trình mũ, phương trình lôgarit...

Nghiệm của phương trình là bộ {\displaystyle x_{1},x_{2},...} tương ứng sao khi ta thay vào phương trình thì ta có đó là một mệnh đề đúng.

Giải phương trình là tìm tập nghiệm của phương trình đó.

Cần chú ý phân biệt phương trình với đẳng thức, sự thể hiện rằng giá trị hai hàm số luôn bằng nhau với mọi biến số. Khi cẩn thận, nên sử dụng dấu "\equiv" thay cho dấu "=" khi viết đẳng thức, như trong (3) ở trên.

Trong ngôn ngữ lập trình cho máy tính, người ta hay quy ước dùng dấu "==" cho phương trình và dấu "=" cho đẳng thức. Biểu diễn phương trình như vậy trong lập trình nhiều khi được nhận giá trị đúng khi hai vế bằng nhau và sai khi hai vế khác nhau.

3 tháng 4 2017

còn giải phương trình thì mik chịubucminh

15 tháng 5 2019

Có : 3N = x

=> x = N + N + N = N * 3

~Study well~

#ARMY_BLINK#

Bài 1:Tính:a,\(\sqrt{\left(a-2\right)^2}\)với a\(\ge\)2b,\(\sqrt{\left(a+10\right)^2}\)với a<-10c,\(\sqrt{\left(3-a\right)^2}\)(a\(\in\)R)Bài 2;Tìm x để:a,\(\sqrt{x}\)=1/2b,\(\sqrt{x+7}\)=4c,\(\sqrt{2x-1}\)=1/3d,\(\sqrt{x+1}\)=0e,\(\sqrt{x-3}\)+2=0f,\(\sqrt{2x}\)+3=9Bài 3:Cho A=\(\sqrt{x^2+y^2-2z^2}\).Tính giá trị A khi x=\(\sqrt{5}\),y=2,z=0Bài 4:So sánh:a,\(4\frac{8}{33}\)và 3\(\sqrt{2}\)b,5.\(\sqrt{\left(-10\right)^2}\) và 10.\(\sqrt{\left(-5\right)^2}\)Bài 5:Không...
Đọc tiếp

Bài 1:Tính:

a,\(\sqrt{\left(a-2\right)^2}\)với a\(\ge\)2

b,\(\sqrt{\left(a+10\right)^2}\)với a<-10

c,\(\sqrt{\left(3-a\right)^2}\)(a\(\in\)R)

Bài 2;Tìm x để:

a,\(\sqrt{x}\)=1/2

b,\(\sqrt{x+7}\)=4

c,\(\sqrt{2x-1}\)=1/3

d,\(\sqrt{x+1}\)=0

e,\(\sqrt{x-3}\)+2=0

f,\(\sqrt{2x}\)+3=9

Bài 3:Cho A=\(\sqrt{x^2+y^2-2z^2}\).Tính giá trị A khi x=\(\sqrt{5}\),y=2,z=0

Bài 4:So sánh:

a,\(4\frac{8}{33}\)và 3\(\sqrt{2}\)

b,5.\(\sqrt{\left(-10\right)^2}\) và 10.\(\sqrt{\left(-5\right)^2}\)

Bài 5:Không dùng bảng số liệu máy tính hãy so sánh:

a.\(\sqrt{26}+\sqrt{17}\) và 9

b,\(\sqrt{8}-\sqrt{5}\) và 1

c,\(\sqrt{63-27}\) và \(\sqrt{63}-\sqrt{27}\)

Bài 6:Hãy so sánh A và B

A=\(\sqrt{225}-\frac{1}{\sqrt{5}}\)-1

B=\(\sqrt{196}-\frac{1}{\sqrt{6}}\) 

Bài 7:a,CHo M=\(\frac{\sqrt{x}-1}{2}\).Tìm x\(\in\)Z và x<50 để m có giá trị nguyên

         b,Cho P=\(\frac{9}{\sqrt{5}-5}\).Tìm x\(\in\)Z để P có giá trị nguyên

Bài 8:cho P=1/4+2\(\sqrt{x-3}\);Q=9.3.\(\sqrt{x-2}\)

a,Tìm GTNN của P

b,Tìm giá trị lớn nhất của Q

Bài 8:Cho biểu thức :A=|x-1/2|+3/4-x

a,rút gọn A

b,Tìm GTNN của A

Baif9:Cho biểu thức:B=0,(21)-x-?x-0,(4)|

a,Rút gọn B

b,Tìm GTLN của B

Bài 10:So sánh:

a,0,55(56) và 0,5556

b,-1/7 và -0,1428(57)

c,\(2\frac{2}{3}\)và 2,67

d,-7/6 và 1,16667

e,0,(31) và 0,3(11)

      Mn cố gắng giúp mk hết,mình cảm ơn nhìu.Ai xong trước mk tick cho:))

6
3 tháng 2 2019

các bạn giúp mk để mk ăn tết cho zui

3 tháng 2 2019

luong thuy anh giúp mk vs

2 tháng 1 2016

ê yến ơi cô tao bảo cô tao đi chép đáp án , trong biểu điểm bài cuối của anh em kq là 8 chứ ko phải -1, đứa nào làm 2 th vẫn đc điểm tối đa