Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow99x+\left(1+2+3+...+98+99\right)=9900\)(vì có 99 số hạng nha)
\(\Rightarrow99x+4950=9900\)
\(\Rightarrow99x=4950\)
\(\Rightarrow x=50\)
Đưa về: x. (1/1-1/2+1/2-1/3+...-1/99+1/99-1/100) = 99
=> 99x/100 = 99
=> x = 100
a) \(\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-3}{97}+\frac{x-4}{96}=4\)
\(\Rightarrow\frac{x-1}{99}-1+\frac{x-2}{98}-1+\frac{x-3}{97}-1+\frac{x-3}{96}-1=4-4\)
\(\Rightarrow\frac{x-100}{99}+\frac{x-100}{98}+\frac{x-100}{97}+\frac{x-100}{96}=0\)
\(\Rightarrow\left(x-100\right)\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{96}\right)=0\)
\(\Rightarrow x-1=0\) ( vì \(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{96}\ne0\) )
Vậy x = 1
b) \(\frac{x+1}{99}+\frac{x+2}{98}+\frac{x+3}{97}=3\)
\(\Rightarrow\frac{x+1}{99}+1+\frac{x+2}{98}+1+\frac{x+3}{97}+1=3-3\)
\(\Rightarrow\frac{x+100}{99}+\frac{x+100}{98}+\frac{x+100}{97}=0\)
\(\Rightarrow\left(x+100\right).\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}\right)=0\)
Vì \(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}\ne0\)
=> x + 100 = 0
=> x = -100
c) \(\frac{x-1}{99}+\frac{x-2}{49}+\frac{x-4}{32}=6\)
\(\Rightarrow\frac{x-1}{99}-1+\frac{x-2}{49}-2+\frac{x-4}{32}-3=6-6\)
\(\Rightarrow\frac{x-100}{99}+\frac{x-100}{49}+\frac{x-100}{32}=0\)
\(\Rightarrow\left(x-100\right)\left(\frac{1}{99}+\frac{1}{49}+\frac{1}{32}\right)=0\)
Vì \(\frac{1}{99}+\frac{1}{49}+\frac{1}{32}\ne0\)
=> x - 100 = 0
=> x = 100
Chúc bạn học tốt
có người khác trả lời trước rồi nên chị ko trả lời đâu nhé em trai
\(\left(x-100\right)\left(x-99\right)\left(x-98\right)...\left(x-2\right)\left(x-1\right)=0\\ \Rightarrow\left\{{}\begin{matrix}x-1=0\\x-2=0\\...\\x-100=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\x=2\\...\\x=100\end{matrix}\right.\)
\(\Rightarrow\) Biểu thức \(\left(x-100\right)\left(x-99\right)\left(x-98\right)...\left(x-1\right)=0\) khi \(1\le x\le100\)
\(\Leftrightarrow x\in\left\{1;2;...;100\right\}\)
Ta có :
\(\frac{x+1}{100}+\frac{x+2}{99}=\frac{x+3}{98}+\frac{x+4}{97}\)
\(\Leftrightarrow\)\(\left(\frac{x+1}{100}+1\right)+\left(\frac{x+2}{99}+1\right)=\left(\frac{x+3}{98}+1\right)+\left(\frac{x+4}{97}+1\right)\)
\(\Leftrightarrow\)\(\frac{x+101}{100}+\frac{x+101}{99}=\frac{x+101}{98}+\frac{x+101}{97}\)
\(\Leftrightarrow\)\(\frac{x+101}{100}+\frac{x+101}{99}-\frac{x+101}{98}-\frac{x+101}{97}=0\)
\(\Leftrightarrow\)\(\left(x+101\right)\left(\frac{1}{100}+\frac{1}{99}-\frac{1}{98}-\frac{1}{97}\right)=0\)
Vì \(\frac{1}{100}+\frac{1}{99}-\frac{1}{98}-\frac{1}{97}\ne0\)
Nên \(x+101=0\)
\(\Rightarrow\)\(x=-101\)
Vậy \(x=-101\)
Chúc bạn học tốt ~
(x+1)+(x+2)+...+(x+98)+(x+99)=9900
x.99+(1+2+3+...+98+99)=9900
x.99+[(99-1):1+1].(99+1):2=9900
x.99+99.100:2
x.99+99.50=9900
x.99+4950=9900
x.99=9900-4950
x.99=4950
x=4950:99
x=50
chúc bạn học tốt nha
\(\left(x+1\right)+\left(x+2\right)+...+\left(x+98\right)+\left(x+99\right)=9900\)
\(\left(x+x+x+...+x+x\right)+\left(1+2+3+...+99\right)=9900\)
\(\left(99\cdot x\right)+\left(100\times99\div2\right)=9900\)
\(99x+4950=9900\)
\(99x=9900-4950\)
\(x=4950\div99\)
\(x=50\)