\(\sqrt{x}+\sqrt[3]{x-1}=1\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2015

Đặt \(a=\sqrt{x};b=\sqrt[3]{x-1}\) ( a > 0 )

=> a2 = x; b3 = x - 1 => b= a2 - 1 <=> a - b= 1  (1)

PT trở thành a + b = 1 => a = 1 - b (2)

Thay (2) vào (1) ta có: (1 - b)- b= 1 <=> 1 - 2b + b2 - b= 1 <=> b- b+ 2b = 0 <=> b.(b- b + 2) = 0 <=> b = 0 hoặc b2 - b + 2 = 0 

+) b = 0 => \(\sqrt[3]{x-1}=1\) <=> x - 1 = 1 <=> x = 2

+) b2 - b + 2 = 0  <=> (b- 2.\(\frac{1}{2}\).b + \(\frac{1}{4}\))  + \(\frac{7}{4}\) = 0 <=> (b - \(\frac{1}{2}\))\(\frac{7}{4}\) = 0 (PT vô nghiệm)

Vậy x = 2

tích mình với

ai tích mình

mình tích lại

thanks

14 tháng 2 2019

Tích mình đi mình tích lại

2 tháng 8 2017

+)\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)= 2

\(\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}=2\)

\(\sqrt{\left(x-1+1\right)^2}+\sqrt{\left(x-1-1\right)^2}=2\)

\(\sqrt{x^2}+\sqrt{\left(x-2\right)^2}=2\)

\(x+x-2=2\)

\(2x=4\)

\(x=2\)

+) Hình như sai đâu bài chỗ \(\sqrt{x+3+4\sqrt{x+1}}\)

\(\)

9 tháng 2 2018

\(M=\frac{3x+3\sqrt{x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}+2}+\frac{\sqrt{x}-2}{\sqrt{x}}.\left(\frac{1}{1-\sqrt{x}}-1\right)\)

\(M=\frac{3x+3\sqrt{x}-3}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)  \(+\frac{\sqrt{x}-2}{\sqrt{x}}.\frac{\sqrt{x}}{\sqrt{x}-1}\)

\(M=\frac{3x+3\sqrt{x}-3}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\frac{x-1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\) \(+\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(M=\frac{3x+3\sqrt{x}-3-x+1+x-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(M=\frac{3x+3\sqrt{x}-6}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(M=\frac{3\left(x+\sqrt{x}-2\right)}{x+\sqrt{x}-2}\)

\(M=3\)

9 tháng 2 2018

b) \(\sqrt{x}=M\)

\(\Leftrightarrow x=M^2\)

thay vào ta có: 

\(x=3^2\)

\(x=9\)

c) \(M=3\in N\)

\(\Rightarrow x=3\)

d) \(M>1\Leftrightarrow x>1\)

24 tháng 5 2020

a) ĐK: \(x\ge0;x\ne1\)

Trước tiên chúng ta tính: 

\(1-x\sqrt{x}=1-\left(\sqrt{x}\right)^3=\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)\)

\(1+x\sqrt{x}=1+\left(\sqrt{x}\right)^3=\left(1+\sqrt{x}\right)\left(1-\sqrt{x}+x\right)\)

khi đó:

P = \(\left(1+\sqrt{x}+x+\sqrt{x}\right)\left(1-\sqrt{x}+x-\sqrt{x}\right)\)

\(=\left(x+2\sqrt{x}+1\right)\left(x-2\sqrt{x}+1\right)\)

\(=\left(\sqrt{x}+1\right)^2.\left(\sqrt{x}-1\right)^2\)

\(=\left(x-1\right)^2\)

b) \(P< 7-4\sqrt{3}=4-2.2.\sqrt{3}+3=\left(2-\sqrt{3}\right)^2\)

=> \(\left(x-1\right)^2< \left(2-\sqrt{3}\right)^2\)

<=> \(\sqrt{3}-2< x-1< 2-\sqrt{3}\)

<=> \(\sqrt{3}-1< x< 3-\sqrt{3}\)

Đối chiếu điều kiện: \(\sqrt{3}-1< x< 3-\sqrt{3}\) và x khác 1.