K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

`#3107.101107`

`1.`

`a,`

`(2x - 3)^2 = |3 - 2x|`

`=> (2x - 3)^2 = |2x - 3|`

`=>`\(\left[{}\begin{matrix}2x-3=\left(2x-3\right)^2\\2x-3=-\left(2x-3\right)^2\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}2x-3-\left(2x-3\right)^2=0\\2x-3+\left(2x-3\right)^2=0\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}\left(2x-3\right)\left(1-2x+3\right)=0\\\left(2x-3\right)\left(1+2x-3\right)=0\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}2x-3=0\\4-2x=0\\2x-2=0\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=2\\x=1\end{matrix}\right.\)

Vậy, `x \in {3/2; 2; 1}`

`b,`

`(x - 1)^2 + (2x - 1)^2 = 0`

`=>`\(\left[{}\begin{matrix}\left(x-1\right)^2=0\\\left(2x-1\right)^2=0\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x-1=0\\2x-1=0\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=1\\x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy, `x \in {1; 1/2}`

`c,`

`5 - x^2 = 1`

`=> x^2 = 4`

`=> x^2 = (+-2)^2`

`=> x = +-2`

Vậy, `x \in {-2; 2}`

`d,`

`x - 2\sqrt{x} = 0`

`=> x^2 - (2\sqrt{x})^2 = 0`

`=> x^2 - 4x = 0`

`=> x(x - 4) = 0`

`=>`\(\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

Vậy, `x \in {0; 4}`

`g,`

`(x - 1) + 1/7 = 0`

`=> x - 1 + 1/7 = 0`

`=> x - 6/7 = 0`

`=> x = 6/7`

Vậy, `x = 6/7.`

20 tháng 6 2019

a)/x-2/+/x-5/=3
TH1:   

x-2+x-5=3
x+x-2-5=3
     2x-7=3
        2x=3+7
        2x=10
          x=10:2
          x=5
TH2

x-2+x-5= -3
x+x-2-5=-3
     2x-7=-3
        2x=-3+7
        2x=4
          x=4:2
          x=2
Vậy x\(\in\){5;2}

29 tháng 6 2019

\(a,\frac{1}{2}x+\frac{5}{2}=\frac{7}{2}x-\frac{3}{4}\)

\(\Leftrightarrow\frac{1}{2}x+\frac{5}{2}-\frac{7}{2}x=-\frac{3}{4}\)

\(\Leftrightarrow\frac{1}{2}x-\frac{7}{2}x+\frac{5}{2}=-\frac{3}{4}\)

\(\Leftrightarrow-3x+\frac{5}{2}=-\frac{3}{4}\)

\(\Leftrightarrow-3x=-\frac{13}{4}\)

\(\Leftrightarrow x=-\frac{13}{4}:(-3)=-\frac{13}{4}:\frac{-3}{1}=-\frac{13}{4}\cdot\frac{-1}{3}=\frac{13}{12}\)

29 tháng 6 2019

\(b,\frac{2}{3}x-\frac{2}{5}=\frac{1}{2}x-\frac{1}{3}\)

\(\Leftrightarrow\frac{2}{3}x-\frac{2}{5}-\frac{1}{2}x=-\frac{1}{3}\)

\(\Leftrightarrow\frac{2}{3}x-\frac{1}{2}x-\frac{2}{5}=-\frac{1}{3}\)

\(\Leftrightarrow\frac{1}{6}x-\frac{2}{5}=-\frac{1}{3}\)

\(\Leftrightarrow\frac{1}{6}x=\frac{1}{15}\)

\(\Leftrightarrow x=\frac{1}{15}:\frac{1}{6}=\frac{1}{15}\cdot6=\frac{6}{15}=\frac{2}{5}\)

\(c,\frac{1}{3}x+\frac{2}{5}(x+1)=0\)

\(\Leftrightarrow\frac{1}{3}x+\frac{2}{5}x+\frac{2}{5}=0\)

\(\Leftrightarrow\frac{11}{15}x=-\frac{2}{5}\)

\(\Leftrightarrow x=-\frac{6}{11}\)

d,e,f Tương tự

23 tháng 9 2021

\(a,\Leftrightarrow-\dfrac{1}{2}x=\dfrac{1}{4}\Leftrightarrow x=-\dfrac{1}{2}\\ b,\Leftrightarrow\dfrac{1}{6}:x=\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}\Leftrightarrow x=\dfrac{1}{6}:\dfrac{5}{6}=\dfrac{1}{5}\\ c,\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{5}=3\\x+\dfrac{1}{5}=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{14}{5}\\x=-\dfrac{16}{5}\end{matrix}\right.\)

\(d,\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2=\dfrac{22}{9}-\dfrac{7}{3}=\dfrac{1}{9}\\ \Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{1}{3}\\x+\dfrac{1}{2}=-\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{6}\\x=-\dfrac{5}{6}\end{matrix}\right.\\ e,\Leftrightarrow2\left|x\right|=2-\dfrac{1}{2}=\dfrac{3}{2}\\ \Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{3}{2}\\2x=-\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=-\dfrac{3}{4}\end{matrix}\right.\)

\(f,\Leftrightarrow\left|x+\dfrac{1}{2}\right|=1+\dfrac{1}{6}=\dfrac{7}{6}\\ \Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{7}{6}\\x+\dfrac{1}{2}=-\dfrac{7}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{5}{3}\end{matrix}\right.\)

e: ta có: \(2\left|x\right|+\dfrac{1}{2}=2\)

\(\Leftrightarrow2\left|x\right|=\dfrac{3}{2}\)

\(\Leftrightarrow\left|x\right|=\dfrac{3}{4}\)

hay \(x\in\left\{\dfrac{3}{4};-\dfrac{3}{4}\right\}\)

Bài 1: 

a) Ta có: \(\dfrac{17}{6}-x\left(x-\dfrac{7}{6}\right)=\dfrac{7}{4}\)

\(\Leftrightarrow\dfrac{17}{6}-x^2+\dfrac{7}{6}x-\dfrac{7}{4}=0\)

\(\Leftrightarrow-x^2+\dfrac{7}{6}x+\dfrac{13}{12}=0\)

\(\Leftrightarrow-12x^2+14x+13=0\)

\(\Delta=14^2-4\cdot\left(-12\right)\cdot13=196+624=820\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{14-2\sqrt{205}}{-24}=\dfrac{-7+\sqrt{205}}{12}\\x_2=\dfrac{14+2\sqrt{2015}}{-24}=\dfrac{-7-\sqrt{205}}{12}\end{matrix}\right.\)

b) Ta có: \(\dfrac{3}{35}-\left(\dfrac{3}{5}-x\right)=\dfrac{2}{7}\)

\(\Leftrightarrow\dfrac{3}{5}-x=\dfrac{3}{35}-\dfrac{10}{35}=\dfrac{-7}{35}=\dfrac{-1}{5}\)

hay \(x=\dfrac{3}{5}-\dfrac{-1}{5}=\dfrac{3}{5}+\dfrac{1}{5}=\dfrac{4}{5}\)

12 tháng 7 2021

ai giúp mik vs

20 tháng 6 2019

a) Ta có bảng bỏ dấu GTTĐ:

x  x<2   2  2<x<5 5    5<x 
|x-2|2-x0x-23x-2
|x-5|5-x35-x0x-5
Vế Trái7-2x3332x-7

+) Với x < 2 : \(7-2x=3\Leftrightarrow2x=4\Leftrightarrow x=2\)( vô lý => Loại )

+) Với x = 2 :\(3=3\)( hợp lý => Chọn )

+) Với 2 < x < 5 : \(3=3\)( hợp lý => Chọn )

+) Với x = 5 : \(3=3\)( hợp lý => Chọn )

+) Với x > 5 : \(2x-7=3\Leftrightarrow2x=10\Leftrightarrow x=5\)( vô lý => Loại )

Vậy \(2\le x\le5.\)

Mình chỉ làm phần a) thôi nhé. 5 phần còn lại bạn làm tương tự nhé !



 

20 tháng 6 2019

Nhóc anh chỉ làm 1 phần hướng dẫn nhé các phần khác em nhìn và làm theo.

a) \(|x-2|+|x-5|=3\left(1\right)\)

Ta có: \(x-2=0\Leftrightarrow x=2\)

               \(x-5=0\Leftrightarrow x=5\)

Lập bảng xét dấu:

x-2 x-5 2 5 0 0 - - - + + +

+) Với \(x< 2\Rightarrow\hept{\begin{cases}x-2< 0\\x-5< 0\end{cases}\Rightarrow\hept{\begin{cases}|x-2|=2-x\\|x-5|=5-x\end{cases}}\left(2\right)}\)

Thay (2) vào (1) ta được :

\(\left(2-x\right)+\left(5-x\right)=3\)

\(7-2x=3\)

\(2x=4\)

\(x=2\)( chọn )

+) Với \(2\le x\le5\Rightarrow\hept{\begin{cases}x-2>0\\x-5< 0\end{cases}\Rightarrow\hept{\begin{cases}|x-2|=x-2\\|x-5|=5-x\end{cases}}}\left(3\right)\)

Thay (3) vào (1) ta được :

\(\left(x-2\right)+\left(5-x\right)=3\)

\(3=3\)( luôn đúng chọn )

+) Với \(x>5\Rightarrow\hept{\begin{cases}x-2>0\\x-5>0\end{cases}}\Rightarrow\hept{\begin{cases}|x-2|=x-2\\|x-5|=x-5\end{cases}\left(4\right)}\)

Thay (4) vào (1) ta được :

\(\left(x-2\right)+\left(x-5\right)=3\)

\(2x-7=3\)

\(2x=10\)

\(x=5\)( loại )

Vậy \(2\le x\le5\)