K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2021

\(a,\Leftrightarrow x^2\left(x-4\right)\left(x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\\ b,\Leftrightarrow\left(3x-5\right)^2=0\Leftrightarrow x=\dfrac{5}{3}\)

14 tháng 10 2021

a) pt <=> x^2(x - 4)(x + 4) = 0

<=> x = 0 hoặc x = 4 hoặc x = -4

b) pt <=> (3x -5)^2=0

<=> x = 5/3

14 tháng 7 2017

1) \(\left(x-3\right)\left(x-5\right)+44\)

\(=x^2-3x-5x+15+44\)

\(=x^2-8x+59\)

\(=x^2-2.x.4+4^2+43\)

\(=\left(x-4\right)^2+43\ge43>0\)

\(\rightarrowĐPCM.\)

2) \(x^2+y^2-8x+4y+31\)

\(=\left(x^2-8x\right)+\left(y^2+4y\right)+31\)

\(=\left(x^2-2.x.4+4^2\right)-16+\left(y^2+2.y.2+2^2\right)-4+31\)

\(=\left(x-4\right)^2+\left(y+2\right)^2+11\ge11>0\)

\(\rightarrowĐPCM.\)

3)\(16x^2+6x+25\)

\(=16\left(x^2+\dfrac{3}{8}x+\dfrac{25}{16}\right)\)

\(=16\left(x^2+2.x.\dfrac{3}{16}+\dfrac{9}{256}-\dfrac{9}{256}+\dfrac{25}{16}\right)\)

\(=16\left[\left(x+\dfrac{3}{16}\right)^2+\dfrac{391}{256}\right]\)

\(=16\left(x+\dfrac{3}{16}\right)^2+\dfrac{391}{16}>0\)

-> ĐPCM.

4) Tương tự câu 3)

5) \(x^2+\dfrac{2}{3}x+\dfrac{1}{2}\)

\(=x^2+2.x.\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{9}+\dfrac{1}{2}\)

\(=\left(x+\dfrac{1}{3}\right)^2+\dfrac{7}{18}>0\)

-> ĐPCM.

6) Tương tự câu 5)

7) 8) 9) Tương tự câu 3).

15 tháng 7 2017

Giải rõ giúp mình với

19 tháng 9 2019

Bài 1a/

\(\frac{1}{1+x+xy}=\frac{xyz}{xyz+x+xy}=\frac{yz}{1+y+yz}\)

\(\frac{1}{1+z+xz}=\frac{y}{y+yz+xyz}=\frac{y}{1+y+yz}\)

Vậy \(M=\frac{1}{1+y+yz}+\frac{y}{1+y+yz}+\frac{yz}{1+y+yz}=1\)

Chiều về làm tiếp

19 tháng 9 2019

Bài 1b:Lời giải này chủ yếu nhờ dự đoán trước Min là 2011/2012 đạt được khi x=2012

Ta có \(P=\frac{2012x^2-2.2012x+2012^2}{2012x^2}=\frac{\left(x-2012\right)^2+2011x^2}{2012x^2}\ge\frac{2011x^2}{2012x^2}=\frac{2011}{2012}\)

Bài 2: Dùng phân tích thành bình phương

\(10x^2+y^2+4z^2+6x-4y-4xz+5=\left(9x^2+6x+1\right)+\left(y^2-4y+4\right)+\left(x^2-4xz+4z^2\right)\)

\(=\left(3x+1\right)^2+\left(y-2\right)^2+\left(x-2z\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}3x+1=0\\y-2=0\\x-2z=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{-1}{3}\\y=2\\z=-\frac{1}{6}\end{cases}}}\)

Bài 3:

a/\(pt\Leftrightarrow\left(x+6\right)\left(x-5\right)\left(x^2-x+1\right)=0\Leftrightarrow x=-6,x=5\)

b/ta phân tích vế trái thành:\(\left(3x-3\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\Rightarrow\hept{\begin{cases}x=1\\y=3\\z=-1\end{cases}}\)

13 tháng 8 2016

1/ Ta có : \(P\left(x\right)=-x^2+13x+2012=-\left(x-\frac{13}{2}\right)^2+\frac{8217}{4}\le\frac{8217}{4}\)

Dấu "=" xảy ra khi x = 13/2

Vậy Max P(x) = 8217/4 tại x = 13/2

2/ Ta có : \(x^3+3xy+y^3=x^3+3xy.1+y^3=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)^3=1\)

3/ \(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=0\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)

\(\Leftrightarrow ab+bc+ac=-\frac{1}{2}\) \(\Leftrightarrow\left(ab+bc+ac\right)^2=\frac{1}{4}\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\frac{1}{4}\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=\frac{1}{4}\)(vì a+b+c=0)

Ta có : \(a^2+b^2+c^2=1\Leftrightarrow\left(a^2+b^2+c^2\right)^2=1\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=1\)

\(\Leftrightarrow a^4+b^4+c^4=1-2\left(a^2b^2+b^2c^2+c^2a^2\right)=1-\frac{2.1}{4}=\frac{1}{2}\)

 

Bài 1:

a:\(\Leftrightarrow x^2-6x+24=0\)

=>(x-3)^2+15=0(loại)

b: \(\Leftrightarrow\left(x-\sqrt{3}\right)^3=0\)

=>x-căn 3=0

=>x=căn 3

11 tháng 9 2016

2/ \(\frac{1}{2}x2y5z3=\left(\frac{1}{2}.2.5.3\right)xyz\)\(=15xyz\)

\(\Rightarrow\frac{1}{2}x2y5z3\)có bậc là 3

3/ \(\frac{x}{4}=\frac{9}{x}\Leftrightarrow x^2=9.4\Rightarrow x^2=36\) mà \(x>0\Rightarrow x=6\)

4/ \(\left|2x-\frac{1}{2}\right|+\frac{3}{7}=\frac{38}{7}\Rightarrow\left|2x+\frac{1}{2}\right|=\frac{35}{7}=5\Rightarrow\hept{\begin{cases}2x+\frac{1}{2}=5\Rightarrow2x=\frac{9}{2}\Rightarrow x=\frac{9}{4}\\2x+\frac{1}{2}=-5\Rightarrow2x=\frac{-11}{2}\Rightarrow x=\frac{-11}{4}\end{cases}}\)

10 tháng 11 2016

Bài 1: Giả sử \(C\ge0\)

Ta có:

\(C=b^3-a^3-6b^2-a^2+9b\ge0\)

\(\Leftrightarrow\left(b^3-6b^2+9b\right)-\left(a^3+a^2\right)\ge0\Leftrightarrow b\left(b^2-6b+9\right)-a^2\left(a+1\right)\ge0\)

\(\Leftrightarrow b\left(b-3\right)^2-a^2\left(a+1\right)\ge0\)

\(a+b=3\Rightarrow b=3-a\)

\(\Rightarrow C=\left(3-a\right)\left(3-a-3\right)^2-a^2\left(a+1\right)\ge0\Leftrightarrow a^2\left(3-a\right)-a^2\left(a+1\right)=a^2\left(2-2a\right)\ge0\)

Ta có: \(a^2\ge0;a\le0\Rightarrow2a\le0\Rightarrow-2a\ge0\Rightarrow2-2a\ge2\Rightarrow C\ge0\)(luôn đúng)

Bài 2: để suy nghĩ đã á

 

 

10 tháng 11 2016

nhanh len

3 tháng 6 2017

a)1-6x2-x =0<=>-(6x2+x-1)=0<=>6x2+x-1=0

<=>(6x2+3x)-(2x+1)=0<=>3x(2x+1)-(2x+1)=0

<=>(3x-1)(2x+1)=0

=>3x-1=0 hoặc 2x+1=0=>x=\(\dfrac13\) hoặc x=-\(\dfrac12\)

Vậy S={\(\dfrac13\);-\(\dfrac12\)}

b)12x2+13x+3=0<=>12x2+9x+4x+3=0<=>(12x2+9x)+(4x+3)=0

<=>3x(4x+3)+(4x+3)=0<=>(3x+1)(4x+3)=0

=>3x+1=0 hoặc 4x+3=0 <=>x=-\(\dfrac13 \) hoặc x=-\(\dfrac34\)

Vậy S={-\(\dfrac13 \);-\(\dfrac34 \)}

c)x3-11x2+30x=0<=>x(x2-11x+30)=0<=>x[(x2-6x)-(5x-30)]=0

<=>x[x(x-6)-5(x-6)]=0<=>x(x-5)(x-6)=0

=>x=0 hoặc x-5=0 hoặc x-6=0=>x=0 hoặc x=5 hoặc x=6

Vậy S={0;5;6}

d)Ta có:(x2+x+1)(x2+x+2)-12=0

Đặt:t=x2+x+1

Khi đó:a(a+1)-12=0<=>a2+a-12=0<=>(a2+4a)-(3a+12)=0

<=>a(a+4)-3(a+4)=0<=>(a-3)(a+4)=0

hay (x2+x-2)(x2+x+5)=0

<=>(x-1)(x+2)(x2+x+5)=0(x2+x-2=(x-1)(x+2))

=>x-1=0 hoặc x+2=0(vì x2+x+5=(x+\(\dfrac12\))2+\(\dfrac{19}{4}\)>0)

=>x=1 hoặc x=-2

Vậy S={1;-2}

e)Ta có:2x2+x+6>x2+x+6=(x+\(\dfrac12\))2+\(\dfrac{23}{4}\)>0

nên PT vô nghiệm

Vậy S=\(\varnothing\)

5 tháng 7 2017

a) 9x2+30x+25=32x2+2.3.5x+52=(3x+5)2

b)12/5x2y2-9x4-4/25y4=-(9x4-12/5x2y2+4/25y4)=-(3x-2/5y)2

c)a2y2+b2x22axby=(ax-by)2

d)64x2-(8a+b)2=(8x-8a-b)(8x+8a+b)

5 tháng 11 2017

\(16x^2-9\left(x+1\right)^2=0\)

\(16x^2-9\left(x^2+2x+1\right)=0\)

\(16x^2-9x^2-18x-9=0\)

\(7x^2-18x-9=0\)

đến đây dễ rồi, dùng các phương pháp phân tích thành nhân tử có 4 cách 

5 tháng 11 2017

ban kia lam dung roi do

k tui nha

thanks