Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1a/ x3+x2+x+1=0
x2(x+1).(x+1)=0
=> x2(x+1)=0 x =1
hoặc =>[
x+1=0 x=-1
b/(x+2)2=x+2
x2+2.x.2+22 =x+2
x+x+4x+4=x+2
6x+4=x+2
....
c/(x+1)(6x2+2x)+(x-1)(6x2+2x)=0
x2-12 + (6x2+2x)2=0
=> x2-1 = 0 x=1
hoặc => [
(6x2+2x)2=0 x= 0
a/ x4 + 7x2 +6 =0
x4 + 6x2 + x2 + 6 =0
( x4 + 6x2) + ( x2 + 6) =0
x2 ( x2 + 6) +( x2 + 6) =0
( x2 + 6)(x2 +1) =0
không tìm được x vì ( x2 + 6)(x2 +1) > 0 V x\(\varepsilon\)R
b/ 5x6 - 12x3 + 7 = 0
5x6 - 5x3 - 7x3 +7 =0
5x3(x3 - 1) - 7(x3 - 1) =0
(5x3 - 7)(x3 - 1) =0
5x3 - 7 =0 hoặc x3 - 1 =0
x= \(\sqrt[3]{\frac{7}{5}}\)hoặc x = 1
c/ x2 + x -2 =0
x2 - x + 2x -2 = 0
x(x - 1) + 2(x - 1) =0
(x + 2)(x - 1) =0
x + 2 = 0 hoặc x - 1 =0
x= -2 hoặc x = 1
d/ x2 - 8x5 = 0
x2(1 - 8x3) =0
x2 = 0 hoặc 1 - 8x3 = 0
x=0 hoặc x = \(\sqrt[3]{\frac{1}{8}}\)
e/ 3x2 - x-14=0
( câu này mình không biết làm)
Bài 1.
a) x( 8x - 2 ) - 8x2 + 12 = 0
<=> 8x2 - 2x - 8x2 + 12 = 0
<=> 12 - 2x = 0
<=> 2x = 12
<=> x = 6
b) x( 4x - 5 ) - ( 2x + 1 )2 = 0
<=> 4x2 - 5x - ( 4x2 + 4x + 1 ) = 0
<=> 4x2 - 5x - 4x2 - 4x - 1 = 0
<=> -9x - 1 = 0
<=> -9x = 1
<=> x = -1/9
c) ( 5 - 2x )( 2x + 7 ) = ( 2x - 5 )( 2x + 5 )
<=> -4x2 - 4x + 35 = 4x2 - 25
<=> -4x2 - 4x + 35 - 4x2 + 25 = 0
<=> -8x2 - 4x + 60 = 0
<=> -8x2 + 20x - 24x + 60 = 0
<=> -4x( 2x - 5 ) - 12( 2x - 5 ) = 0
<=> ( 2x - 5 )( -4x - 12 ) = 0
<=> \(\orbr{\begin{cases}2x-5=0\\-4x-12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-3\end{cases}}\)
d) 64x2 - 49 = 0
<=> ( 8x )2 - 72 = 0
<=> ( 8x - 7 )( 8x + 7 ) = 0
<=> \(\orbr{\begin{cases}8x-7=0\\8x+7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{8}\\x=-\frac{7}{8}\end{cases}}\)
e) ( x2 + 6x + 9 )( x2 + 8x + 7 ) = 0
<=> ( x + 3 )2( x2 + x + 7x + 7 ) = 0
<=> ( x + 3 )2 [ x( x + 1 ) + 7( x + 1 ) ] = 0
<=> ( x + 3 )2( x + 1 )( x + 7 ) = 0
<=> x = -3 hoặc x = -1 hoặc x = -7
g) ( x2 + 1 )( x2 - 8x + 7 ) = 0
Vì x2 + 1 ≥ 1 > 0 với mọi x
=> x2 - 8x + 7 = 0
=> x2 - x - 7x + 7 = 0
=> x( x - 1 ) - 7( x - 1 ) = 0
=> ( x - 1 )( x - 7 ) = 0
=> \(\orbr{\begin{cases}x-1=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=7\end{cases}}\)
Bài 2.
a) ( x - 1 )2 - ( x - 2 )( x + 2 )
= x2 - 2x + 1 - ( x2 - 4 )
= x2 - 2x + 1 - x2 + 4
= -2x + 5
b) ( 3x + 5 )2 + ( 26x + 10 )( 2 - 3x ) + ( 2 - 3x )2
= 9x2 + 30x + 25 - 78x2 + 22x + 20 + 9x2 - 12x + 4
= ( 9x2 - 78x2 + 9x2 ) + ( 30x + 22x - 12x ) + ( 25 + 20 + 4 )
= -60x2 + 40x2 + 49
d) ( x + y )2 - ( x + y - 2 )2
= [ x + y - ( x + y - 2 ) ][ x + y + ( x + y - 2 ) ]
= ( x + y - x - y + 2 )( x + y + x + y - 2 )
= 2( 2x + 2y - 2 )
= 4x + 4y - 4
Bài 3.
A = 3x2 + 18x + 33
= 3( x2 + 6x + 9 ) + 6
= 3( x + 3 )2 + 6 ≥ 6 ∀ x
Đẳng thức xảy ra <=> x + 3 = 0 => x = -3
=> MinA = 6 <=> x = -3
B = x2 - 6x + 10 + y2
= ( x2 - 6x + 9 ) + y2 + 1
= ( x - 3 )2 + y2 + 1 ≥ 1 ∀ x,y
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-3=0\\y^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=0\end{cases}}\)
=> MinB = 1 <=> x = 3 ; y = 0
C = ( 2x - 1 )2 + ( x + 2 )2
= 4x2 - 4x + 1 + x2 + 4x + 4
= 5x2 + 5 ≥ 5 ∀ x
Đẳng thức xảy ra <=> 5x2 = 0 => x = 0
=> MinC = 5 <=> x = 0
D = -2/7x2 - 8x + 7 ( sửa thành tìm Max )
Để D đạt GTLN => 7x2 - 8x + 7 đạt GTNN
7x2 - 8x + 7
= 7( x2 - 8/7x + 16/49 ) + 33/7
= 7( x - 4/7 )2 + 33/7 ≥ 33/7 ∀ x
Đẳng thức xảy ra <=> x - 4/7 = 0 => x = 4/7
=> MaxC = \(\frac{-2}{\frac{33}{7}}=-\frac{14}{33}\)<=> x = 4/7
a, 2(x+5)=x2+5x
=> 2x+10=x2+5x
=> 0=x2+5x-2x-10
=> x2+3x-10=0
=> x2+5x-2x-10=0
=> x(x+5)-2(x+5)=0
=> (x-2)(x+5)=0
=> x-2 =0 hoặc x+5 =0
=> x=2 hoặc x=-5
b, 4x2-25=(2x-5)(2x+7)
=> (2x)2-52=(2x-5)(2x+7)
=> (2x-5)(2x+5) - (2x-5)(2x+7)=0
=> (2x-5)(2x+5-2x-7)=0
=> (2x-5)(-2)=0
=> 2x-5=0
=> 2x=5
=> x =2,5
c, x3+x=0
=>x(x2+1)=0
=> x=0 hoặc x2+1=0
Mà x2+1 >= 1 nên x=0
d, Hình như là thiếu đề
a,=2x+10=x2+5x
=-x2-2x-5x+10=0
=-x2-7x+10=0
Delta=(-7)2-4.-1.10=89
x1=7+căn89/2 x2=7-căn 89/2
CÁC CÂU KHÁC TỰ GIẢI NHA bạn
a) \(3\left(2x-1\right)\left(3x-1\right)-\left(2x-3\right)\left(9x-1\right)-3=-3\)
\(\Leftrightarrow18x^2-15x+3-18x^2+29x-3-3=-3\)
\(\Leftrightarrow14x=0\)
\(\Leftrightarrow x=0\)
Vậy pt có nghiệm duy nhất x = 0.
b) \(\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)=\left(x+2\right)-\left(x-5\right)\)
\(\Leftrightarrow6x^2+19x-7-6x^2-x+5=7\)
\(\Leftrightarrow18x-2=7\)
\(\Leftrightarrow18x=9\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy pt có nghiệm duy nhất \(x=\frac{1}{2}\)
c) \(\left(6x-2\right)^2+\left(5x-2\right)^2-4\left(3x-1\right)\left(5x-2\right)=0\)
\(\Leftrightarrow36x^2-24x+4+25x^2-20x+4-60x^2+33x-8=0\)
\(\Leftrightarrow x^2-11x=0\)
\(\Leftrightarrow x\left(x-11\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=11\end{matrix}\right.\)
Vậy pt có tập nghiệm \(S=\left\{0;11\right\}\)
d) \(\left(x+3\right)^2-\left(x-4\right)\left(x+8\right)=1\)
\(\Leftrightarrow x^2-6x+9-x^2-4x+32=1\)
\(\Leftrightarrow41-10x=1\)
\(\Leftrightarrow-10x=40\)
\(\Leftrightarrow x=-4\)
Vậy pt có nghiệm duy nhất x = -4.
e) \(3\left(x+2\right)^2+\left(2x-1\right)^2-7\left(x+3\right)\left(x-3\right)=36\)
\(\Leftrightarrow3\left(x^2+4x+4\right)+4x^2-4x+1-7x^2+36=36\)
\(\Leftrightarrow3x^2+12x+12+4x^2-4x+1-7x^2=0\)
\(\Leftrightarrow8x=-13\)
\(\Leftrightarrow x=-\frac{13}{8}\)
Vậy pt có nghiệm duy nhất \(x=-\frac{13}{8}\)
\(1a,8x^2y^2-12x^3+6x^2\)
\(=2\left(4x^2y^2-13x^3+3x^2\right)\)
\(b,5x\left(x-y\right)-\left(x-y\right)\)( sai đề hả )
\(=\left(x-y\right)\left(5x-1\right)\)
\(c,4x\left(x-2\right)-\left(2-x\right)^2\)
\(=4x\left(x-2\right)-\left(x-2\right)^2\)
\(=\left(x-2\right)\left(4x-x+2\right)=\left(x-2\right)\left(3x+2\right)\)
\(2,\)\(x\left(x-3\right)-\left(3-x\right)=0\)
\(\Rightarrow x\left(x-3\right)+\left(x-3\right)=0\)
\(\Rightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}\Rightarrow\hept{\begin{cases}x=3\\x=-1\end{cases}}}\)
phần b làm theo đề thôi nhé ko biết đầu bài đúng ko
\(5x\left(x-y\right)-\left(y-y\right)\)
\(=5x\left(x-y\right)\)
HA ha ngắn gọn vãi
Các bạn giải hộ mk 5 bài này nhanh lên nhé. Mình cảm ơn các bạn trước nha
a.
\(2\left(x+5\right)-x^2-5x=0\)
\(\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\)
\(\Leftrightarrow\left(2-x\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2-x=0\\x+5=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
b.
\(6x^2-7x+2=0\)
\(\Leftrightarrow6x^2-3x-4x+2=0\)
\(\Leftrightarrow3x\left(2x-1\right)-2\left(2x-1\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=\dfrac{1}{2}\end{matrix}\right.\)