K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a/ x+ 7x+6 =0

 x+ 6x+ x+ 6 =0

( x+ 6x2) + ( x2 + 6) =0

x( x2 + 6) +( x2 + 6) =0

( x2 + 6)(x2 +1) =0

không tìm được x vì ( x2 + 6)(x2 +1) > 0 V x\(\varepsilon\)R

b/ 5x- 12x+ 7 = 0

5x6 - 5x3 - 7x3 +7 =0

5x3(x3 - 1) - 7(x- 1) =0

(5x- 7)(x- 1) =0

5x- 7 =0 hoặc x- 1 =0

x= \(\sqrt[3]{\frac{7}{5}}\)hoặc x = 1

c/ x+ x -2 =0

x- x + 2x -2 = 0

x(x - 1) + 2(x - 1) =0

(x + 2)(x - 1) =0

x + 2 = 0 hoặc x - 1 =0

x= -2 hoặc x = 1

d/ x2 - 8x5 = 0

x2(1 - 8x3) =0

x= 0 hoặc 1 - 8x= 0

x=0 hoặc x = \(\sqrt[3]{\frac{1}{8}}\) 

e/ 3x2 - x-14=0

( câu này mình không biết làm)

22 tháng 8 2017

a)\(x^2+3x+6=x^2+2.\frac{3}{2}x+\frac{9}{4}+\frac{15}{4}=0\)

  \(\left(x+\frac{3}{2}\right)^2+\frac{15}{4}=0\)

      \(\left(x+\frac{3}{2}\right)^2=-\frac{15}{4}\)

             Vì bình phương luôn lớn hơn hoặc bằng 0

                    Nên PT vô nghiệm

b)\(x^2-2x-3=0\)

   \(x^2-3x+x-3=0\)

    \(\left(x+1\right)\left(x-3\right)=0\)

            \(\Rightarrow\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)

                            

22 tháng 8 2017

d)\(x^3-2x^2-x+2=0\)

   \(x^2\left(x-2\right)-\left(x-2\right)=0\)

    \(\left(x-1\right)\left(x+1\right)\left(x-2\right)=0\)

        \(\Rightarrow\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)

              x - 2 = 0                   x=2

c)\(2x^2+7x+3=0\)

    \(2x^2+x+6x+3=0\)

    \(x\left(2x+1\right)+3\left(2x+1\right)=0\)

     \(\left(2x+1\right)\left(x+3\right)=0\)

          \(\Rightarrow\orbr{\begin{cases}2x+1=0\\x+3=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{1}{2}\\x=-3\end{cases}}\)

2 tháng 9 2020

Bài 1.

a) x( 8x - 2 ) - 8x2 + 12 = 0

<=> 8x2 - 2x - 8x2 + 12 = 0 

<=> 12 - 2x = 0

<=> 2x = 12

<=> x = 6

b) x( 4x - 5 ) - ( 2x + 1 )2 = 0

<=> 4x2 - 5x - ( 4x2 + 4x + 1 ) = 0

<=> 4x2 - 5x - 4x2 - 4x - 1 = 0

<=> -9x - 1 = 0

<=> -9x = 1

<=> x = -1/9

c) ( 5 - 2x )( 2x + 7 ) = ( 2x - 5 )( 2x + 5 )

<=> -4x2 - 4x + 35 = 4x2 - 25

<=> -4x2 - 4x + 35 - 4x2 + 25 = 0

<=> -8x2 - 4x + 60 = 0

<=> -8x2 + 20x - 24x + 60 = 0

<=> -4x( 2x - 5 ) - 12( 2x - 5 ) = 0

<=> ( 2x - 5 )( -4x - 12 ) = 0

<=> \(\orbr{\begin{cases}2x-5=0\\-4x-12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-3\end{cases}}\)

d) 64x2 - 49 = 0

<=> ( 8x )2 - 72 = 0

<=> ( 8x - 7 )( 8x + 7 ) = 0

<=> \(\orbr{\begin{cases}8x-7=0\\8x+7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{8}\\x=-\frac{7}{8}\end{cases}}\)

e) ( x2 + 6x + 9 )( x2 + 8x + 7 ) = 0

<=> ( x + 3 )2( x2 + x + 7x + 7 ) = 0

<=> ( x + 3 )[ x( x + 1 ) + 7( x + 1 ) ] = 0

<=> ( x + 3 )2( x + 1 )( x + 7 ) = 0

<=> x = -3 hoặc x = -1 hoặc x = -7

g) ( x2 + 1 )( x2 - 8x + 7 ) = 0

Vì x2 + 1 ≥ 1 > 0 với mọi x

=> x2 - 8x + 7 = 0

=> x2 - x - 7x + 7 = 0

=> x( x - 1 ) - 7( x - 1 ) = 0

=> ( x - 1 )( x - 7 ) = 0

=> \(\orbr{\begin{cases}x-1=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=7\end{cases}}\)

Bài 2.

a) ( x - 1 )2 - ( x - 2 )( x + 2 )

= x2 - 2x + 1 - ( x2 - 4 )

= x2 - 2x + 1 - x2 + 4

= -2x + 5

b) ( 3x + 5 )2 + ( 26x + 10 )( 2 - 3x ) + ( 2 - 3x )2

= 9x2 + 30x + 25 - 78x2 + 22x + 20 + 9x2 - 12x + 4

= ( 9x2 - 78x2 + 9x2 ) + ( 30x + 22x - 12x ) + ( 25 + 20 + 4 )

= -60x2 + 40x2 + 49

d) ( x + y )2 - ( x + y - 2 )2

= [ x + y - ( x + y - 2 ) ][ x + y + ( x + y - 2 ) ]

= ( x + y - x - y + 2 )( x + y + x + y - 2 )

= 2( 2x + 2y - 2 )

= 4x + 4y - 4

Bài 3.

 A = 3x2 + 18x + 33

= 3( x2 + 6x + 9 ) + 6 

= 3( x + 3 )2 + 6 ≥ 6 ∀ x

Đẳng thức xảy ra <=> x + 3 = 0 => x = -3

=> MinA = 6 <=> x = -3

B = x2 - 6x + 10 + y2

= ( x2 - 6x + 9 ) + y2 + 1

= ( x - 3 )2 + y2 + 1 ≥ 1 ∀ x,y

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-3=0\\y^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=0\end{cases}}\)

=> MinB = 1 <=> x = 3 ; y = 0

C = ( 2x - 1 )2 + ( x + 2 )2

= 4x2 - 4x + 1 + x2 + 4x + 4

= 5x2 + 5 ≥ 5 ∀ x

Đẳng thức xảy ra <=> 5x2 = 0 => x = 0

=> MinC = 5 <=> x = 0

D = -2/7x2 - 8x + 7 ( sửa thành tìm Max )

Để D đạt GTLN => 7x2 - 8x + 7 đạt GTNN

7x2 - 8x + 7 

= 7( x2 - 8/7x + 16/49 ) + 33/7

= 7( x - 4/7 )2 + 33/7 ≥ 33/7 ∀ x

Đẳng thức xảy ra <=> x - 4/7 = 0 => x = 4/7

=> MaxC = \(\frac{-2}{\frac{33}{7}}=-\frac{14}{33}\)<=> x = 4/7

21 tháng 7 2016

giải mệt cả người mà có ai biết ơn đâu

15 tháng 11 2017

2)

a) \(3x^3-3x=0\)

\(\Leftrightarrow3x\left(x^2-1\right)=0\)

\(\Leftrightarrow3x\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=0\\x-1=0\\x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)

Vậy x=0 ; x=-1 ; x=1

b) \(x^2-x+\dfrac{1}{4}=0\)

\(\Leftrightarrow x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2=0\)

\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2=0\)

\(\Leftrightarrow x-\dfrac{1}{2}=0\)

\(\Leftrightarrow x=\dfrac{1}{2}\)

Vậy \(x=\dfrac{1}{2}\)

15 tháng 11 2017

1)

a) \(\left(x-2\right)\left(x^2+3x+4\right)\)

\(\Leftrightarrow x^3+3x^2+4x-2x^2-6x-8\)

\(\Leftrightarrow x^3+x^2-2x-8\)

b) \(\left(x-2\right)\left(x-x^2+4\right)\)

\(=x^2-x^3+4x-2x+2x^2-8\)

\(=3x^2-x^3+2x-8\)

c) \(\left(x^2-1\right)\left(x^2+2x\right)\)

\(=x^4+2x^3-x^2-2x\)

d) \(\left(2x-1\right)\left(3x+2\right)\left(3-x\right)\)

\(=\left(6x^2+4x-3x-2\right)\left(3-x\right)\)

\(=18x^2+12x-9x-6-6x^3-4x^2+3x^2+2x\)

\(=17x^2+5x-6-6x^3\)

21 tháng 7 2016

1/\(x^2+5x+6=0\)

=>\(x^2+2x+3x+6=0\)

=>\(x\left(x+2\right)+3\left(x+2\right)=0\)

=>\(\left(x+2\right)\left(x+3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+2=0\\x+3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\x=-3\end{cases}}}\)

Các câu sau làm tương tự câu 1, tách ghép khéo léo sẽ ra :)

8 tháng 1 2018

Bài 2: a) \(3x^3-3x=0\Leftrightarrow3x\left(x^2-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)

b) \(x^2-x+\frac{1}{4}=0\Leftrightarrow x^2-2.\frac{1}{2}+\left(\frac{1}{2}\right)^2=0\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)

24 tháng 7 2017

2/ 5x ( 12x + 7 ) - ( 3x + 1 ) ( 20x - 5 ) = -100

\(\Leftrightarrow\) 60x2 + 35x - 60x2 + 15x - 20x + 5 = -100

\(\Leftrightarrow\) 30x = -100 - 5

\(\Leftrightarrow\) x = - 3,5

24 tháng 7 2017

4/ ( x + 5 ) 2 + ( x + 4 ) ( x - 4 ) = 0

\(\Leftrightarrow\) x2 + 10x + 25 + x2 - 4 = 0

\(\Leftrightarrow\) 2x2 + 10x + 21 = 0

---> Phương trình vô nghiệm

Sửa đề bài : 4/ ( x + 5 ) 2 - ( x + 4 ) ( x - 4 ) = 0

\(\Leftrightarrow\) x2 + 10x + 25 - x2 + 4 = 0

\(\Leftrightarrow\) 10x = - 29

\(\Leftrightarrow\) x = \(-\dfrac{29}{10}\)

Vậy phương trình có nghiệm.......

6 tháng 7 2018

\(1.6x\left(x-10\right)-2x+20=0\)

\(6x\left(x-10\right)-2\left(x-10\right)=0\)

\(2\left(x-10\right)\left(3x-1\right)=0\)

⇔ x = 10 hoặc x = \(\dfrac{1}{3}\)

KL....

\(2.3x^2\left(x-3\right)+3\left(3-x\right)=0\)

\(3\left(x-3\right)\left(x^2-1\right)=0\)

\(x=+-1\) hoặc \(x=3\)

KL....

\(3.x^2-8x+16=2\left(x-4\right)\)

\(\left(x-4\right)^2-2\left(x-4\right)=0\)

\(\left(x-4\right)\left(x-6\right)=0\)

\(x=4\) hoặc \(x=6\)

KL.....

\(4.x^2-16+7x\left(x+4\right)=0\)

\(\text{⇔}4\left(x+4\right)\left(2x-1\right)=0\)

\(x=-4hoacx=\dfrac{1}{2}\)

KL.....

\(5.x^2-13x-14=0\)

\(x^2+x-14x-14=0\)

\(\text{⇔}\left(x+1\right)\left(x-14\right)=0\)

\(\text{⇔}x=14hoacx=-1\)

KL......

Còn lại tương tự ( dài quá ~ )