Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+..+\frac{1}{x\left(x+2\right)}=\frac{20}{41}\)
\(\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{x.\left(x+2\right)}\right)=\frac{20}{41}\)
\(\frac{1}{2}\left(\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{\left(x+2\right)-x}{x\left(x+2\right)}\right)=\frac{20}{41}\)
\(\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{20}{41}\)
\(\frac{1}{2}\left(1-\frac{1}{x+2}\right)=\frac{20}{41}\)
\(1-\frac{1}{x+2}=\frac{20}{41}:\frac{1}{2}\)
\(1-\frac{1}{x+2}=\frac{40}{41}\)
\(\frac{1}{x+2}=1-\frac{40}{41}\)
\(\frac{1}{x+2}=\frac{1}{41}\)
\(x+2=41\)
\(x=41-2\)
\(x=39\)
Tìm x
a) \(\frac{1}{1\times3}+\frac{1}{3\times5}+\frac{1}{5\times7}+...+\frac{1}{x\times\left(x+2\right)}=\frac{20}{41}\)
\(\Rightarrow\frac{1}{2}\times\left(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{x\times\left(x+1\right)}\right)=\frac{20}{41}\)
\(\Rightarrow\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{x\times\left(x+2\right)}=\frac{20}{41}:\frac{1}{2}\)
\(\Rightarrow\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{x\times\left(x+2\right)}=\frac{40}{41}\)
\(\Rightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{\left(x+2\right)}=\frac{40}{41}\)
\(\Rightarrow1-\frac{1}{x+2}=\frac{40}{41}\)
\(\Rightarrow\frac{1}{x+2}=1-\frac{40}{41}\)
\(\Rightarrow\frac{1}{x+2}=\frac{1}{41}\)
\(\Rightarrow x+2=41\)
\(\Rightarrow x=41-2\)
\(\Rightarrow x=39\)
Vậy x = 39
1 + 1/3 + 1/6 + 1/10 + .......... + 1/x.(x+1):2 =1 + 1991/1993
1/2.(1 + 1/3 + 1/6 + 1/10+........+ 1/x.(x+1):2=3984/3986
1/2 + 1/6 +1/12 + .......... +1/x.(x+1)=3984/3986
1/1.2 + 1/2.3 + 1/3.4 +..........+.1/x.(x+1)=3984/3986
2-1/1.2 + 3-2/2.3 + 4-3/3.4 +..........+ x + 1 - x/x.(x+1)
1-1/2+1/2-1/3+1/3-1/4+..........+1/x -1/x+1 =3984/3986
1-1/x+1=3984/3986
1/x+1=1-3984/3986
1/x+1=2/3986=1/1993
x+1=1993
x =1993-1
x =1992
a) \(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{x\left(x+2\right)}=\frac{20}{41}\)
\(\Leftrightarrow\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{x\left(x+2\right)}\right)=\frac{20}{41}\)
\(\Leftrightarrow\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{20}{41}\)
\(\Leftrightarrow\frac{1}{2}.\left(1-\frac{1}{x+2}\right)=\frac{20}{41}\)
\(\Leftrightarrow1-\frac{1}{x+2}=\frac{40}{41}\)
\(\Leftrightarrow\frac{1}{x+2}=\frac{1}{41}\)
\(\Leftrightarrow x+2=41\)
\(\Leftrightarrow x=2\)
Vậy x=2
b) \(x+4=2^0+1^{2019}\)
\(\Leftrightarrow x+4=1+1\)
\(\Leftrightarrow x+4=2\)
\(\Leftrightarrow x=-2\)
Vậy x=-2