K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2021

\(3x\left(x-2020\right)-x+2020=0\)

\(3x\left(x-2020\right)-\left(x-2020\right)=0\)

\(\left(3x-1\right)\left(x-2020\right)=0\)

\(\orbr{\begin{cases}x=\frac{1}{3}\left(TM\right)\\x=2020\left(TM\right)\end{cases}}\)

\(b,4-9x^2=0\)

\(2^2-\left(3x\right)^2=0\)

\(\left(2-3x\right)\left(2+3x\right)=0\)

\(\orbr{\begin{cases}2-3x=0\\2+3x=0\end{cases}\orbr{\begin{cases}x=\frac{2}{3}\left(TM\right)\\x=-\frac{2}{3}\left(TM\right)\end{cases}}}\)

\(c,x^2-x+\frac{1}{4}=0\)

\(x^2-x+\left(\frac{1}{2}\right)^2=0\)

\(\left(x-\frac{1}{2}\right)^2=0\)

\(x-\frac{1}{2}=0\)

\(x=\frac{1}{2}\)

\(d,x\left(x-3\right)+\left(x-3\right)=0\)

\(\left(x-3\right)\left(x+1\right)=0\)

\(\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}\orbr{\begin{cases}x=3\left(TM\right)\\x=-1\left(TM\right)\end{cases}}}\)

\(e,9x\left(x-7\right)-x+7=0\)

\(9x\left(x-7\right)-\left(x-7\right)=0\)

\(\left(9x-1\right)\left(x-7\right)=0\)

\(\orbr{\begin{cases}9x-1=0\\x-7=0\end{cases}\orbr{\begin{cases}x=\frac{1}{9}\left(TM\right)\\x=7\left(TM\right)\end{cases}}}\)

8 tháng 7 2021

a) 3x(x - 2020) - x + 2020 = 0 

<=> 3x(x - 2020) - (x - 2020) = 0

<=> (3x - 1)(x - 2020) = 0

<=> \(\orbr{\begin{cases}3x-1=0\\x-2020=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=2020\end{cases}}\)

Vậy tập nghiệm phương trình là \(S=\left\{\frac{1}{3};2020\right\}\)

b) \(4-9x^2=0\)

<=> \(\left(2-3x\right)\left(2+3x\right)=0\)

<=> \(\orbr{\begin{cases}2-3x=0\\2+3x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=-\frac{2}{3}\end{cases}}\)

Vậy \(x\in\left\{\frac{2}{3};-\frac{2}{3}\right\}\)là nghiệm phương trình 

c) \(x^2-x+\frac{1}{4}=0\)

<=> \(\left(x-\frac{1}{2}\right)^2=0\)

<=> \(x-\frac{1}{2}=0\)

<=> \(x=\frac{1}{2}\)

d) x(x - 3) + (x - 3) = 0

<=> (x + 1)(x - 3) = 0

<=> \(\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)

Vậy \(x\in\left\{-1;3\right\}\)là nghiệm phương trình

e) 9x(x - 7) - x + 7 = 0

<=> (9x - 1)(x - 7) = 0

<=> \(\orbr{\begin{cases}9x-1=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{9}\\x=7\end{cases}}\)

Vậy \(x\in\left\{\frac{1}{9};7\right\}\)là nghiệm phương trình

20 tháng 8 2021

1, \(2x^3-50x=0\Leftrightarrow2x\left(x^2-25\right)=0\Leftrightarrow x=0;x=\pm5\)

2, \(5x^2-4\left(x^2-2x+1\right)-5=0\)

\(\Leftrightarrow5\left(x-1\right)\left(x+1\right)-4\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(x-1\right)\left[5\left(x+1\right)-4\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+9\right)=0\Leftrightarrow x=-9;x=1\)

3, \(6x\left(x-2\right)=x-2\Leftrightarrow\left(6x-1\right)\left(x-2\right)=0\Leftrightarrow x=\frac{1}{6};x=2\)

4, \(7\left(x-2020\right)^2-x+2020=0\Leftrightarrow7\left(x-2020\right)^2-\left(x-2020\right)=0\)

\(\Leftrightarrow\left(x-2020\right)\left[7\left(x-2020\right)-1\right]=0\Leftrightarrow x=2020;x=\frac{14141}{7}\)

5, \(x^2-10x=-25\Leftrightarrow x^2-10x+25=0\Leftrightarrow\left(x-5\right)^2=0\Leftrightarrow x=5\)

6, \(x^2-2x-3=0\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\Leftrightarrow x=-1;x=3\)

\(1,\)

\(2x^3-50x=0\)

\(\Leftrightarrow2x\left(x^2-25\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-25=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm5\end{cases}}\)

\(2,\)

\(5x^2-4\left(x^2-2x+1\right)-5=0\)

\(\Leftrightarrow5x^2-4x^2+8x-4-5=0\)

\(\Leftrightarrow x^2+8x-9=0\)

\(\Leftrightarrow x^2-x+9x-9=0\)

\(\Leftrightarrow x\left(x-1\right)+9\left(x-1\right)=0\)

\(\Leftrightarrow\left(x+9\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+9=0\\x-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-9\\x=1\end{cases}}\)

\(3,\)

\(6x\left(x-2\right)=x-2\)

\(\Leftrightarrow6x\left(x-2\right)-\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(6x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{1}{6}\end{cases}}\)

\(4,\)

\(7\left(x-2020\right)^2-x+2020=0\)

\(\Leftrightarrow7\left(x-2020\right)^2-\left(x-2020\right)=0\)

\(\Leftrightarrow\left(x-2020\right)[7\left(x-2020\right)-1]=0\)

\(\Leftrightarrow\left(x-2020\right)[7x-14141]=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=2020\\7x=14141\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2020\\x=\frac{14141}{7}\end{cases}}\)

\(5,\)

\(x^2-10x=-25\)

\(\Leftrightarrow x^2-10x+25=0\)

\(\Leftrightarrow\left(x-5\right)^2=0\)

\(\Leftrightarrow x-5=0\)

\(\Leftrightarrow x=5\)

\(6,\)

\(x^2-2x-3=0\)

\(\Leftrightarrow x^2-3x+x-3=0\)

\(\Leftrightarrow x\left(x-3\right)+\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)

22 tháng 7 2019

b) \(x^3+6x^2+9x=0\)

\(\Leftrightarrow x^3+3x^2+3x^2+9x=0\)

\(\Leftrightarrow x^2\left(x+3\right)+3x\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2+3x\right)=0\)

\(\Leftrightarrow\left(x+3\right)x\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)^2x=0\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x+3\right)^2=0\\x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=0\end{cases}}}\)

Vậy \(x\in\left\{-3;0\right\}\)

22 tháng 7 2019

a) \(2x\left(x-2\right)+x^2=4\)

\(\Leftrightarrow2x\left(x-2\right)+x^2-4=0\)

\(\Leftrightarrow2x\left(x-2\right)+\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x+x+2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(3x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\3x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{-2}{3}\end{cases}}}\)

Vậy \(x\in\left\{\frac{-2}{3};2\right\}\)

24 tháng 7 2018

chẳng có đề bài biết làm ntn

10 tháng 10 2021

\(a,\Rightarrow x^2+4x+4+x^2-2x+1+x^2-9-3x^2=-8\\ \Rightarrow2x=-4\\ \Rightarrow x=-2\\ b,\Rightarrow2021x\left(x-2020\right)-\left(x-2020\right)=0\\ \Rightarrow\left(2021x-1\right)\left(x-2020\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-2020=0\\2021x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2020\\x=\dfrac{1}{2021}\end{matrix}\right.\)

12 tháng 10 2021

a) \(\Rightarrow x^2+4x+4+x^2-2x+1+x^2-9-3x^2=-8\)

\(\Rightarrow2x=-4\Rightarrow x=-2\)

b) \(\Rightarrow2021x\left(x-2020\right)-\left(x-2020\right)=0\)

\(\Rightarrow\left(x-2020\right)\left(2021x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=2020\\x=\dfrac{1}{2021}\end{matrix}\right.\)

bài 5:

1: \(\dfrac{12x^3y^2}{18xy^5}=\dfrac{12x^3y^2:6xy^2}{18xy^5:6xy^2}=\dfrac{2x^2}{3y^3}\)

2: \(\dfrac{10xy-5x^2}{2x^2-8y^2}=\dfrac{5x\cdot2y-5x\cdot x}{2\left(x^2-4y^2\right)}\)

\(=\dfrac{5x\left(2y-x\right)}{-2\left(x+2y\right)\left(2y-x\right)}=\dfrac{-5x}{2\left(x+2y\right)}\)

3: \(\dfrac{x^2-xy-x+y}{x^2+xy-x-y}\)

\(=\dfrac{\left(x^2-xy\right)-\left(x-y\right)}{\left(x^2+xy\right)-\left(x+y\right)}\)

\(=\dfrac{x\left(x-y\right)-\left(x-y\right)}{x\left(x+y\right)-\left(x+y\right)}=\dfrac{\left(x-y\right)\left(x-1\right)}{\left(x+y\right)\left(x-1\right)}=\dfrac{x-y}{x+y}\)

4: \(\dfrac{\left(x+1\right)\left(x^2-2x+1\right)}{\left(6x^2-6\right)\left(x^3-1\right)}\)

\(=\dfrac{\left(x+1\right)\left(x-1\right)^2}{6\left(x^2-1\right)\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{\left(x+1\right)\left(x-1\right)}{6\left(x-1\right)\left(x+1\right)\cdot\left(x^2+x+1\right)}\)

\(=\dfrac{1}{6\left(x^2+x+1\right)}\)

5: \(\dfrac{2x^2-7x+3}{1-4x^2}\)

\(=-\dfrac{2x^2-7x+3}{4x^2-1}\)

\(=-\dfrac{2x^2-6x-x+3}{\left(2x-1\right)\left(2x+1\right)}\)

\(=-\dfrac{2x\left(x-3\right)-\left(x-3\right)}{\left(2x-1\right)\left(2x+1\right)}\)

\(=-\dfrac{\left(x-3\right)\left(2x-1\right)}{\left(2x-1\right)\left(2x+1\right)}=\dfrac{-x+3}{2x+1}\)

Bài 3:

1: \(9x^3-xy^2\)

\(=x\cdot9x^2-x\cdot y^2\)

\(=x\left(9x^2-y^2\right)\)

\(=x\left(3x-y\right)\left(3x+y\right)\)

2: \(x^2-3xy-6x+18y\)

\(=\left(x^2-3xy\right)-\left(6x-18y\right)\)

\(=x\left(x-3y\right)-6\left(x-3y\right)\)

\(=\left(x-3y\right)\left(x-6\right)\)

3: \(x^2-3xy-6x+18y\)

\(=\left(x^2-3xy\right)-\left(6x-18y\right)\)

\(=x\left(x-3y\right)-6\left(x-3y\right)\)

\(=\left(x-3y\right)\left(x-6\right)\)

4: \(6xy-x^2+36-9y^2\)

\(=36-\left(x^2-6xy+9y^2\right)\)

\(=36-\left(x-3y\right)^2\)

\(=\left(6-x+3y\right)\left(6+x-3y\right)\)

5: \(x^4-6x^2+5\)

\(=x^4-x^2-5x^2+5\)

\(=x^2\left(x^2-1\right)-5\left(x^2-1\right)\)

\(=\left(x^2-5\right)\left(x^2-1\right)\)

\(=\left(x^2-5\right)\left(x-1\right)\left(x+1\right)\)

6: \(9x^2-6x-y^2+2y\)

\(=\left(9x^2-y^2\right)-\left(6x-2y\right)\)

\(=\left(3x-y\right)\left(3x+y\right)-2\left(3x-y\right)\)

\(=\left(3x-y\right)\left(3x+y-2\right)\)

1: =>x^2+4x-21=0

=>(x+7)(x-3)=0

=>x=3 hoặc x=-7

2: =>(2x-5-4)(2x-5+4)=0

=>(2x-9)(2x-1)=0

=>x=9/2 hoặc x=1/2

3: =>x^3-9x^2+27x-27-x^3+27+9(x^2+2x+1)=15

=>-9x^2+27x+9x^2+18x+9=15

=>18x=15-9-27=-21

=>x=-7/6

6: =>4x^2+4x+1-4x^2-16x-16=9

=>-12x-15=9

=>-12x=24

=>x=-2

7: =>x^2+6x+9-x^2-4x+32=1

=>2x+41=1

=>2x=-40

=>x=-20

26 tháng 1 2021

(3x-2)(4x+5)=0

⇔ 3x-2=0  -> x= 2/3      

 ⇔ 4x-5=0     x= 5/4

Vậy tập nghiệm S = { 2/3; 5/4}

26 tháng 1 2021

2,    (4x+2)(\(X^2\)+3)=0

⇔ 4x+2=0         ->   x= -1/2    

     \(x^2\)+3=0         -> x= \(\sqrt{3}\); -\(\sqrt{3}\)

Vaayj tập nghiệm S= { -1/2; \(\sqrt{3}\);-\(\sqrt{3}\)}

 

pls help me mk đang cần vội :(

9 tháng 11 2021

Bài 1:

\(a,=6x^2+19x-7-6x^3-4x^2+7x=-6x^3+2x^2+26x-7\\ b,B=26\cdot\left(63^2+63\cdot37+37^2\right):26+63\cdot37\\ =63^2+63\cdot37+37^2+63\cdot37\\ =\left(63+37\right)^2=100^2=10000\)

Bài 2:

\(a,=x\left(y^2-25\right)=x\left(y-5\right)\left(y+5\right)\\ b,=\left(x-y\right)\left(x+2\right)\\ c,=\left(x-3\right)\left(x^2-4\right)=\left(x-2\right)\left(x-3\right)\left(x+2\right)\)