Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
\(\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+...+\dfrac{1}{x.\left(x+2\right)}=\dfrac{16}{99}\)
\(\dfrac{1}{2}.\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{x.\left(x+2\right)}\right)=\dfrac{16}{99}\)
\(\dfrac{1}{2}.\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{x}-\dfrac{1}{x+2}\right)=\dfrac{16}{99}\)
\(\dfrac{1}{2}.\left(\dfrac{1}{3}-\dfrac{1}{x+2}\right)=\dfrac{16}{99}\)
\(\dfrac{1}{3}-\dfrac{1}{x+2}=\dfrac{16}{99}:\dfrac{1}{2}\)
\(\dfrac{1}{3}-\dfrac{1}{x+2}=\dfrac{32}{99}\)
\(\dfrac{1}{x+2}=\dfrac{1}{3}-\dfrac{32}{99}\)
\(\dfrac{1}{x+2}=\dfrac{1}{99}\)
\(\Rightarrow x+2=99\)
\(x=99-2\)
\(x=97\)
Chúc em học tốt!
\(\dfrac{1}{3x5}+\dfrac{1}{5x7}+\dfrac{1}{7x9}+...+\dfrac{1}{x\left(x+2\right)}=\dfrac{16}{99}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{3x5}+\dfrac{2}{5x7}+...+\dfrac{2}{x\left(x+2\right)}\right)=\dfrac{16}{99}\)
\(=\dfrac{2}{3x5}\)\(+\dfrac{2}{5x7}+...+\dfrac{2}{x\left(x+2\right)}=\dfrac{32}{99}\)
\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}+.....+\dfrac{1}{x}-\dfrac{1}{x+2}=\dfrac{32}{99}\)
\(=\dfrac{1}{3}-\dfrac{1}{x+2}=\dfrac{32}{99}=>x=97\)
bài2 \(x\times\dfrac{15}{16}-x\times\dfrac{4}{16}=2\)
\(x\times\dfrac{11}{16}=2\)
\(x=2:\dfrac{11}{16}\)
\(x=\dfrac{32}{11}\)
Bài 1 :
\(\dfrac{x}{16}\times\left(2017-1\right)=2\)
\(\dfrac{x}{16}\times2016=2\)
\(\dfrac{x}{16}=\dfrac{2}{2016}\)
\(x=\dfrac{2}{2016}\times16\)
\(x=\dfrac{1}{63}\)
Đặt \(C=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{99.101}\)
\(\Rightarrow2A=\frac{1}{1.3}+\frac{1}{3.5}+.....+\frac{1}{99.101}\)
\(\Rightarrow2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)
\(\Rightarrow2A=1-\frac{1}{101}\)
\(\Rightarrow2A=\frac{100}{101}\)
\(\Rightarrow A=\frac{50}{101}\)
1) (x - 35) - 120 = 0
x - 35 = 120
x = 120 + 35
x = 155
2) 310 - (118 - x) = 217
118 - x = 310 - 217
118 - x = 93
x = 118 - 93
x = 25
3) 156 - (x + 61) = 82
x + 61 = 156 - 82
x + 61 = 74
x = 74 - 61
x = 13
4) 814 - (x - 305) = 712
x - 305 = 814 - 712
x - 305 = 102
x = 102 + 305 = 407
5) 100 - 7 - (x - 5) = 58
x - 5 = 93 - 58
x - 5 = 35
x = 35 + 5 = 40
6) 12(x - 1) : 3 = 43 + 23
4(x - 1) = 72
x - 1 = 18
x = 18 + 1 = 19
7) 24 + 5x = 75 : 73
24 + 5x = 49
5x = 25
x = 25 : 5 = 5
8) 5(x - 1) : 3 = 43 + 23
\(\dfrac{5}{3}\left(x-1\right)=72\)
x - 1 = \(\dfrac{216}{5}\)
x = 221/5
9) 5(x - 4)2 - 7 = 13
5(x - 4)2 = 20
(x - 4)2 = 4
\(\Rightarrow\left[{}\begin{matrix}x-4=2\\x-4=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=6\\x=2\end{matrix}\right.\)
10) (x + 1) + (x + 2) + ... + (x + 30) = 795
=> (x + x + x + ... + x) + (1 + 2 + 3 +...+ 30) = 795 (1)
Đặt A = 1 + 2 + 3 +...+ 30
Số số hạng trong A là: (30 - 1) : 1 + 1 = 30 (số)
Tổng A bằng : (30 + 1).30 : 2 =465
Thay A = 465 vào (1) , ta được:
30x + 465 = 795
=> 30x =330
=> x =11
1: =>x-35=120
=>x=120+35=155
2: =>118-x=310-217=93
=>x=118-93=25
3: =>x+61=156-82=74
=>x=74-61=13
4: =>x-305=814-712=102
=>x=102+305=407
5: =>93-(x-5)=58
=>x-5=35
=>x=40
6: =>4(x-1)=64+8=72
=>x-1=18
=>x=19
7: =>5x+24=49
=>5x=25
=>x=5
8: =>5(x-1):3=4^3+2^3=64+8=72
=>5(x-1)=216
=>x-1=216/5
=>x=221/5
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{x\left(x+2\right)}=\frac{16}{99}\)
\(\Rightarrow\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{x\left(x+2\right)}\right)=\frac{16}{99}\)
\(\Rightarrow\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{x\left(x+2\right)}=\frac{32}{99}\)
=> \(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{x}-\frac{1}{x+2}=\frac{32}{99}\)
=> \(\frac{1}{3}-\frac{1}{x+2}=\frac{32}{99}\)
=> \(\frac{1}{x+2}=\frac{1}{99}\)
=> x + 2 = 99
=> x = 97
Vậy x = 97 là giá trị cần tìm
\(\frac{1}{3\times5}+\frac{1}{5\times7}+\frac{1}{7\times9}+...+\frac{1}{x\times\left(x+2\right)}\)
\(=\frac{1}{2}\times\left(\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{2}{7\times9}+...+\frac{2}{x\times\left(x+2\right)}\right)\)
\(=\frac{1}{2}\times\left(\frac{5-3}{3\times5}+\frac{7-5}{5\times7}+\frac{9-7}{7\times9}+...+\frac{x+2-x}{x\times\left(x+2\right)}\right)\)
\(=\frac{1}{2}\times\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{x}-\frac{1}{x+2}\right)\)
\(=\frac{1}{2}\times\left(\frac{1}{3}-\frac{1}{x+2}\right)\)
\(=\frac{1}{6}-\frac{1}{2\times\left(x+2\right)}=\frac{16}{99}\)
\(\Leftrightarrow\frac{1}{2\times\left(x+2\right)}=\frac{1}{6}-\frac{16}{99}=\frac{1}{198}\)
\(\Leftrightarrow2\times\left(x+2\right)=198\)
\(\Leftrightarrow x+2=99\)
\(\Leftrightarrow x=97\)